首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H2→HF+H reaction on the Stark–Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.  相似文献   

2.
Hydroformylation of propylene has been carried out in supercritical CO2 + H2O and in supercritical propylene + H2O mixtures using Rh(acac)(CO)2 and triphenylphosphine trisulfonate trisodium salt (TPPTS), P(m-C6H4SO3Na)3, as catalyst. Visual observation of the reaction mixtures indicates that in both systems a single phase is present at supercritical temperatures and pressures so that the reaction occurs under homogeneous conditions. After reaction is complete, a biphasic system is formed when the pressure and temperature are reduced to ambient. This facilitates separation of the products in the organic phase and the rhodium catalyst in the aqueous phase. The rhodium concentration in the organic phase was found to be negligible (1.0 × 10−6 mg/ml). Furthermore, compared with traditional hydroformylation technology, the supercritical reactions also show better activity and selectivity.  相似文献   

3.
Ab initio-TST calculations were carried out to study the kinetics of the title reaction. The H atom and the OH abstraction paths leading to the same products HO2 and OH have been considered. The ZPE and BSSE corrected classical barrier heights were predicted to be 7.4 and 17.3 kcal/mol, respectively. Calculated thermal rate constants over the temperature range 300–5000 K showed that the H-abstraction path was the most likely to occur for temperatures below 2500 K which confirms the result found in a previous study [Y. Tarchouna, M. Bahri, N. Jaïdane, Z. Ben Lakdar, J. Mol. Struct. (Theochem), 189 (2003) 664]. The contribution of OH abstraction path to the reaction was predicted to be important for high temperatures.  相似文献   

4.
A quasi-classical trajectory method (QCT) running on the 1A′ and 1A″ potential energy surfaces (PESs) given by Dobbyn and Knowles [A.J. Dobbyn, P.J. Knowles, Mol. Phys. 91 (1997) 1107] has been employed to study the dynamical stereochemistry of the chemical reaction O(1D) + D2 → OD + D, especially the vector correlations between products and reagents. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane on both PESs, with different rotational polarization behaviors of product OD for the two PESs and for different collision energies. Calculations show that the alignment effect of products become weaker with an increase of the collision energy on the 1A′ PES but is not sensitive to the collision energy on the 1A″ PES. When the collision energy increases, the product OD mainly tends to the forward scattering on the 1A′ PES and displays a switch from the backward scattering to the forward one on the 1A″ PES. These differences are probably attributed to the different characteristics of the two PESs.  相似文献   

5.
The rate constant for the reaction of ozone with nitrogen dioxide has been measured over the temperature range 259 to 362°K, using a stopped-flow system coupled to a beam sampling mass spectrometer. A fit of the data to the Arrhenius equation gave: k = (9.44 ± 2.46) × 1010 exp[(?2509 ± 76)/T] cm3 mol?1 sec?1.  相似文献   

6.
In the present work temperature dependence of heat capacity of cesium tantalum tungsten oxide has been measured first in the range from 7 to 350 K and then between 330 and 630 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity Cp° (T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K. The structure of CsTaWO6 is refined by the Rietveld method: space group F d3m, Z = 8, a = 10.3793(2) Å, V = 1118.14(4) Å3. The high-temperature X-ray diffraction was used for the determination of temperature of phase transition and coefficient of thermal expansion.  相似文献   

7.
It is found that charge-transfer on NO2 with Cl2 is fast at thermal energy. The Cl2 ion reacts with NO2 to produce Cl and NO2Cl, and SH charge-transfers rapidly with both Cl2 and NO2. From the exothermicities implied it is deduced that EA (SH)<EA (NO2)< EA (Cl2) or EA (NO2) = 2.38 ± 0.06 eV and EA (Cl2 = 2.46 ± 0.14 eV.  相似文献   

8.
A fluorescence excitation spectrum of (CH3)2CHO (isopropoxy radical) is reported following photolysis of isopropyl nitrite at 355 nm. Rate constants for the reaction of isopropoxy with NO, NO2, and O2 have been measured as a function of pressure (1–50 Torr) and temperature (25–110°C) by monitoring isopropoxy radical concentrations using laser-induced fluorescence. We have obtained the following Arrhenius expressions for the reaction of isopropoxy with NO and O2 respectively: (1.22±0.28)×10?11 exp[(+0.62±0.14 kcal)/RT]cm2/s and (1.51±0.70)×10?14 exp[(?0.39±0.28)kcal/RT]cm3/s where the uncertainties represent 2σ. The results with NO2 are more complex, but indicate that reaction with NO2 proceeds more rapidly than with NO contrary to previous reports. The pressure dependence of the thermal decomposition of the isopropoxy radical was studied at 104 and 133°C over a 300 Torr range using nitrogen as a buffer gas. The reaction is in the fall-off region over the entire range. Upper limits for the reaction of isopropoxy with acetaldehyde, isobutane, ethylene, and trimethyl ethylene are reported.We have performed the first LIF study of the isopropoxy radical. Arrhenius parameters were measured for the reaction of i-PrO with O2, NO, NO2, using direct radical measurement techniques. All reactions are in their high-pressure limits at a few Torr of pressure. The rate constant for the reactions of i-PrO with NO and NO2 reactions exhibit a small negative activation energy. Studies of the i-PrO + NO2 reaction produce data which indicate that O(3P) reacts rapidly with i-PrO. Unimolecular decomposition studies of i-PrO indicate that the reaction is in the fall-off region between 1 and 300 Torr of N2 and the high-pressure limit is above 1 atmosphere of N2.  相似文献   

9.
The phase behaviour of the {CO2 (1) + cis-decalin (2)} binary system has been experimentally studied at temperatures ranging from (292.75 to 373.75) K. Saturation pressures, ranging from (15.9 to 490.5) bar, were obtained using a variable volume high-pressure cell by visual observation of phase transitions at constant overall composition. For this system, no literature data are available and the results obtained in this study reveal the occurrence of vapor–liquid, liquid–liquid, and vapor–liquid–liquid phase transitions in the investigated temperature range. A total of 133 experimental points are reported including bubble points, dew points, liquid–liquid phase equilibria, and coordinates of the three-phase line. The experimental data can be reasonably predicted by the PPR78 model in which the temperature-dependent binary interaction parameter is calculated by a group contribution method.  相似文献   

10.
The absolute rate constant of the reaction of NH2 with NO2 has been measured using a flash-photolysis laser resonance-fluorescence technique. The value obtained at room temperature is k1 = 2.3 (± 0.2) × 10?11 cm3 molecule ?1 s?1. A negative temperature coefficient has been found between 298 and 505 K for this reaction, k1 = 3.8 × 10?8 × T?1.30 cm3 molecule?1 s?1. It is thought that this is the major reaction of NH2 in the troposphere.  相似文献   

11.
Calculations of the dynamics of the reactions O(1D) + H2 → OH + H, O(1D) + HD → OH + D, O(1D) + HD → OD + H and O(1D) + D2 → OD + D have been performed using the quasi-classical trajectory (QCT) method with symplectic integration. The theoretical calculations were carried out on the ground state 1A′ potential energy surfaces (PES) by Dobbyn and Knowles. The distributions of the dihedral angle P(r), the angle between k and j′, P(θr), and the product vibrational state are presented. The results show that the intermediate geometrical structures and lifetimes of the reactive collisions play a vital role in these reactions.  相似文献   

12.
Excited states population distributions created by two-step 6S1/2 → 6P3/2 → 6D5/2 laser excitation in room temperature cesium vapor were quantitatively analyzed applying absorption and saturation spectroscopy. A simple method for the determination of the excited state population in a single excitation step that is based on the measurements of the saturated and unsaturated absorption coefficients was proposed and tested. It was shown that only ≈ 2% of the ground state population could be transferred to the first excited state by pumping the Doppler broadened line with a single-mode narrow-line laser. With complete saturation of the second excitation step, the population amounting to only ≈ 1% of the ground state can be eventually created in the 6D5/2 state. The fluorescence intensity emerging at 7P3/2 → 6S1/2 transition, subsequent to the radiative decay of 6D5/2 population to the 7P3/2 state, was used to assess the efficiency of the population transfer in the chosen two-step excitation scheme. The limitations imposed on the sensitivity of such resonance fluorescence detector caused by velocity-selective excitation in the first excitation step were pointed out and the way to overcome this obstacle is proposed.  相似文献   

13.
Li2O–Cr2O3–GeO2–P2O5 based glasses were synthesized by a conventional melt-quenching method and successfully converted into glass-ceramics through heat treatment. Experimental results of DTA, XRD, ac impedance techniques and FESEM indicated that Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics treated at 900 °C for 12 h in the Li1 + xCrxGe2 − x(PO4)3 (x = 0–0.8) system exhibited the best glass stability against crystallization and the highest ambient conductivity value of 6.81 × 10−4 S/cm with an activation energy as low as 26.9 kJ/mol. In addition, the Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics displayed good chemical stability against lithium metal at room temperature. The good thermal and chemical stability, excellent conducting property, easy preparation and low cost make it promising to be used as solid-state electrolytes for all-solid-state lithium batteries.  相似文献   

14.
CS radicals have been produced by photodissociation of CS2 at 193 nm and their disappearance monitored by LIF. The vibrationally excited CS radicals rapidly relax to CS(ν = 0). At 298 K, the rate coefficients for CS(ν = 0) reactions with O2, O3 and NO2 are (2.9 ± 0.4) × 10?19, (3.0 ± 0.4) × 10?16 and (7.6 ± 1.1) × 10?17 cm3 molecule?1 s?1 respectively. The quenching of CS(A 1II)ν=0 by He has a rate coefficient of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1.  相似文献   

15.
A critical evaluation of all phase diagram and thermodynamic data were performed for the solid and liquid phases of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andS2-) are assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na, K)2(CO3, SO4, S). The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

16.
S. Okada 《Chemical physics》1979,41(3):423-429
The energy loss spectra of K+ ions produced in fast potassium atom—NO2 molecule collisions were studied over the collision energy region 10–40 eV. The energy loss spectra for the K + NO2 system showed five peaks. The first two peaks at about 3.0 eV are ascribed to the ground-states NO?2 with vibrational excitation. The remaining three peaks are ascribed to the electronically excited states of NO?2.  相似文献   

17.
SO was produced from SO2 by pholodissociation with an ArFlaser (193 nm). SO2 chemiluminescence from the SO + O3 reaction was used to monitor the decay of SO and determine rate coefficients for SO reactions with O2 and O3 over the temperature range 230–420 K. The rate expressions are kO2=(2.4+2.6?0.9) x 10?13 exp[(?2370+200?250)/T] and ko3=(4.8+1.6?0.8) × 10?12 exp[(?1170+80?120)/T] cm3 molecule?1 s?1.  相似文献   

18.
A complete, critical evaluation of all phase diagrams and thermodynamic data was performed for all condensed phases of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system, and optimized parameters for the thermodynamic solution models were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range order, where the cations (Na+ and K+) were assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andCl-) were assumed to mix on an anionic sublattice. The thermodynamic properties of the solid solutions of (Na,K)2(SO4,CO3) were modelled using the Compound Energy Formalism, and (Na,K)Cl was modelled using a substitutional model in previous studies. Phase transitions in the common-cation ternary systems (NaCl + Na2SO4 + Na2CO3) and (KCl + K2SO4 + K2CO3) were studied experimentally using d.s.c./t.g.a. The experimental results were used as input for evaluating the phase equilibrium in the common-cation ternary systems. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature are reproduced within experimental error limits.  相似文献   

19.
The reactions (I) Hg2Cl2(s) + Br2(g) and (II) HgCl2(s) + HgBr2(s) have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr, designated as α-HgClBr and β-HgClBr. The cell parameters of the two are as follows:α-HgClBr: a = 6.196 A?, b = 13.12 A?, c = 4.37 A?, z = 4, ? = 5.91 g/cm3. The powder pattern and cell parameters are similar to that of HgCl2. Therefore it is probable that the chlorine atoms, in the linear halogenHghalogen molecules of HgCl2 structure have been replaced by bromines, and since the radius of the bromine atom is larger than that of chlorine, the lattice is larger in this case.β-HgClBr: a = 6.78 A?, b = 13.175 A?, c = 4.17 A?, z = 4, ? = 5.40. These parameters are the same as those reported in the literature for β-Hg(ClBr)2, and its X-ray powder pattern is similar to HgCl2. Therefore this phase also has linear halogenHghalogen molecules but the distribution of Cl and Br atoms is perhaps random.Heating the products (I) and (II) up to the melting point increases the amount of α phase and decreases the β phase, whereas crystallization increases the β phase. DTA study has supported the X-ray findings.  相似文献   

20.
We report quasiclassical trajectory studies of the OH + O → H + O2 reaction using a recently developed ab initio potential energy surface for the ground electronic state of HO2. The total reaction probability is in good agreement with the quantum result. Integral cross sections show no energy threshold and decrease as the collision energy increases. Rate constants have been calculated in the (1–500 K) temperature range. They exhibit a negative temperature dependence for temperatures above 50 K, and the thermal rate constant is in quantitative agreement with the most recent experimental data. The reactivity is slightly enhanced by rotational excitation of OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号