首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous BL breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10−5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.  相似文献   

2.
A "new" scenario is proposed for baryogenesis. We show that the delayed decay of colored Higgs particles in grand unified theories may generate an excess baryon number of the empirically desired amount, if the mass of the heaviest neutrino is in the range 0.02 eV相似文献   

3.
《Physics letters. [Part B]》1987,194(4):477-481
Observation of the prompt neutronization burst by Kamiokande II is shown to constrain the mixing parameter sin2ϑ of a 10–100 eV mass range neutrino less than 10−7, implying that the neutrino is unlikely to provide the critical mass of the universe except in a special case of a neutrino decoupled from other lighter neutrinos. Model dependent bounds on neutrino masses are also given for a class of neutrino mixing models.  相似文献   

4.
We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag(ε,1,1). Texture zeros may occur in the light (class a) or in the heavy (class b) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We find that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CKM CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 1012~1015 GeV. We also discuss RG effects on V13.  相似文献   

5.
We present a simple and crude model of galaxies consisting of baryons and neutrinos with spherical symmetry. The baryon matter is rotatinq. in the central region of the galaxy as a nucleus. If the rotational curve of the heavy matter is known from the observational data, then the gravitational potential, and therefore the density distribution in this region, can also be obtained. This enables us to estimate the mass and the radius of the neutrino halo. Furthermore, the condition on the interface of the nucleus-halo will set an upper bound on neutrino mass. If the corresponding parameters duoted in Ref.[10] are adopted, then a value of ≤20eV. for the neutrino mass is obtained. By choosing mv=15eV and a parameter in the rotational curve n=4, one can deduce that neutrino halo radius is about four times the heavy matter radius, and the total mass of neutrinos is about 14 times that of baryons. It seems, that these results are not in contradiction with the observations on the missing mass of the galaxies[6].  相似文献   

6.
We refer [1] to the role of an additional O(1) eV sterile neutrino in modified gravity models. We find parameter constraints in particular f(R) gravity model using following up-to-dated cosmological data: measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. It was obtained for the sterile neutrino mass 0.47 eV < m ν,sterile < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard cosmology model within the same data set: 0.45 eV < m ν,sterile < 0.92 eV (2σ). But, if the mass of sterile neutrino is fixed and equals ≈ 1.5 eV according to various anomalies in neutrino oscillation experiments, f(R) gravity is much more consistent with observation data than the CDM model.  相似文献   

7.
A narrow baryon resonance is observed in the invariant mass of the K S 0 p system formed in neutrino and antineutrino collisions with nuclei. The mass of the resonance is estimated at 1533±5 MeV. The observed width is less than 20 MeV and is compatible with being entirely due to experimental resolution. The statistical significance of the signal is near 6.7 standard deviations. Since the position of the observed resonance does not match the mass of any known Σ*+ states, we believe that it arises from the neutrino production of the Θ+ pentaquark baryon. The analysis is based on the data obtained in past neutrino experiments with big bubble chambers: WA21, WA25, WA59, E180, and E632.  相似文献   

8.
We point out a possible way to settle the issue of the Dirac neutrino mass hierarchy. Constraining the observed baryon asymmetry to the normal hierarchy mass model within the seesaw framework, we look for the possible structure of coveted Dirac neutrino masses. We have found the possible structure of the Dirac neutrino masses to be (λ72,1)v in terms of the parameter λ=0.3, with v as an overall scale factor. PACS 11.30.Er; 11.30.Fs; 13.35.Hb; 14.60.Pq  相似文献   

9.
The physics potential of GENIUS, a recently proposed double beta decay and dark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10?(2–3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10-3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the νe ? νμ hypothesis of the atmospheric neutrino problem. GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for the first time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics.  相似文献   

10.
θ13 is small compared to the other neutrino mixing angles. The solar mass splitting is about two orders smaller than the atmospheric splitting. We indicate how both could arise from a perturbation of a more symmetric structure. The perturbation also affects the solar mixing angle and can tweak alternate mixing patterns such as tribimaximal, bimaximal, or other variants to viability. For real perturbations only normal mass ordering with the lightest neutrino mass less than 10?2 eV can accomplish this goal. Both mass orderings can be accommodated by going over to complex perturbations if the lightest neutrino is heavier. The CP-phase in the lepton sector, fixed by θ13 and the lightest neutrino mass, distinguishes different options.  相似文献   

11.
The possibilities of using NEMO techniques for future neutrinoless double-beta decay experiments are discussed. The main idea is to have a realistic program with planned sensitivity for half-life measurement on the level of ~(1.5–2)×1026 yr (sensitivity to neutrino mass ~0.04–0.1 eV). It is argued that this can be achieved using the improved NEMO technique to study 100 kg of 82Se. A possible scheme for a future SUPERNEMO detector and its main characteristics are presented. Such a detector can also be used to investigate 0νββ decay in 100Mo, 130Te, and 116Cd with a sensitivity of up to ~(2–5)×1025 yr or with a sensitivity to neutrino mass of ~0.04–0.26 eV.  相似文献   

12.
The present status of experiments seeking double-beta decay is surveyed. The results of the most sensitive experiments are discussed. Particular attention is given to describing the NEMO-3 detector, which is intended for seeking the neutrinoless double-beta decay of various isotopes (100Mo, 82Se, etc.) with a sensitivity as high as T 1/2 ~ 1025 yr, which corresponds to a sensitivity to the Majorana neutrino mass at a level of 0.1 to 0.3 eV. The first results obtained with the NEMO-3 detector are presented. A review of the existing projects of double-beta-decay experiments where it is planned to reach a sensitivity to the Majorana neutrino mass at a level of 0.01 to 0.1 eV is given.  相似文献   

13.
The evaporation of primordial black holes (PBH's) by the Hawking process can produce an excess of baryons over anti-baryons. Assuming a power-law form of the initial mass spectrum of PBH's and taking into account the observational constraints on that spectrum we calculate the baryon excess produced. We find that if the spectrum is steep (α?3.5) or cut off for masses above ~ 109 g, the observed baryon/photon ratio of ~ 10?9 can be produced by PBH evaporations.  相似文献   

14.
The ionisation of hydrogen and helium in the intergalactic medium and of silicon and carbon in galactic halos, including our own, have already tentatively been attributed to photons emitted by decaying neutrinos created in the hot big bang. This hypothesis would require a neutrino mass ~ 100 eV and a radiative lifetime ~ 1027 s. Here we point out that the same ideas could apply instead to photinos. If the photino mass is determined by the grand unification scale ~ 1015 GeV, then a mass ~ 100 eV would be compatible with experiment and the radiative lifetime of the photino would indeed be expected to be ~ 1027 s.  相似文献   

15.
Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of this review is as follows:
  • Introduction
  • Why kilometer-scale detectors?
  • Cosmic neutrinos associated with the highest energy cosmic rays
  • High energy neutrino telescopes: methodologies of neutrino detection
  • High energy neutrino telescopes: status
  •   相似文献   

    16.
    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy(HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m_(ν,sterile)~(eff) 0.2675 eV and N_(eff) 3.5718 for ΛCDM cosmology, m_(ν,sterile)~(eff) 0.5313 eV and N_(eff) 3.5008 for wCDM cosmology, and m_(ν,sterile)~(eff) 0.1989 eV and N_(eff) 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m_(ν,sterile)~(eff) and N_(eff) can be derived, indicating that no evidence of the existence of a sterile neutrino species with e V-scale mass is found in this analysis. Moreover, compared to the ΛCDM model, in the wCDM model the limit on m_(ν,sterile)~(eff) becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.  相似文献   

    17.
    《Physics letters. [Part B]》1986,180(3):285-289
    We investigate the possibility that the small mass difference Δm2 which appears in the MSW mechanism of resonant amplification of the neutrino oscillations in the sun is due to radiative corrections in models with a pseudo-Dirac neutrino. Using the constraints on Δm2 and on the mixing angle θ we show that the mass of this neutrino must be of the order of one or a few eV. The consequences of this scenario for the forthcoming 71Ga solar neutrino experiments as well as for the neutrinoless double-beta decay experiments are also briefly discussed.  相似文献   

    18.
    We consider the Majorana CP violating phases derived from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models, namely degenerate, inverted hierarchical and normal hierarchical models, with tri-bimaximal mixings. Considering three possible diagonal forms of Dirac neutrino mass matrix as charged-lepton, up-quark or down-quark mass matrix within the framework of left-right symmetric GUT models, the right-handed Majorana mass matrices are constructed from the light Majorana neutrino mass matrix through the inverse seesaw formula. These light neutrino mass matrices have already been tested to provide good predictions on neutrino mass parameters and mixing angles. They are again applied to predict baryon asymmetry of the universe in the present work. The normal hierarchical model gives the best prediction for baryon asymmetry, consistent with observation. The analysis may serve as additional information in the discrimination of the presently available neutrino mass models.  相似文献   

    19.
    The presence of domain walls separating regions of unbrokenSU(2)L andSU(2)R is shown to provide necessary conditions for leptogenesis which converts later to the observed baryon asymmetry. The strength of lepton number violation is related to the Majorana neutrino mass and hence related to current bounds on light neutrino masses. Thus the observed neutrino masses and the baryon asymmetry can be used to constrain the scale of left-right symmetry breaking.  相似文献   

    20.
    We propose a unified explanation for the origin of dark matter and baryon number asymmetry on the basis of a non-supersymmetric model for the neutrino masses. Neutrino masses are generated in two distinct ways, that is, a tree-level seesaw mechanism with a single right-handed neutrino, and one-loop radiative effects by a new additional doublet scalar. A spontaneously broken U(1) brings about a Z2 symmetry which restricts couplings of this new scalar and controls the neutrino masses. It also guarantees the stability of a CDM candidate. We examine two possible candidates for the CDM. We also show that the decay of a heavy right-handed neutrino related to the seesaw mechanism can generate baryon number asymmetry through leptogenesis.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号