首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu2+‐dependent ligation DNAzyme is implemented as a biocatalyst for the colorimetric or chemiluminescence detection of Cu2+ ions, Hg2+ ions, or cocaine. These sensing platforms are based on the structural tailoring of the sequence of the Cu2+‐dependent ligation DNAzyme for specific analytes. The tethering of a subunit of the hemin/G‐quadruplex DNAzyme to the ligation DNAzyme sequence, and the incorporation of an imidazole‐functionalized nucleic‐acid sequence, which acts as a co‐substrate for the ligation DNAzyme that is tethered to the complementary hemin/G‐quadruplex subunit. In the presence of different analytes, Cu2+ ions, Hg2+ ions, or cocaine, the pretailored Cu2+‐dependent ligation DNAzyme sequence stimulates the respective ligation process by combining the imidazole‐functionalized co‐substrate with the ligation DNAzyme sequence. These reactions lead to the self‐assembly of stable hemin/G‐quadruplex DNAzyme nanostructures that enable the colorimetric analysis of the substrate through the DNAzyme‐catalyzed oxidation of 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid), ABTS2?, by H2O2 into the colored product ABTS.?, or the chemiluminescence detection of the substrate through the DNAzyme‐catalyzed oxidation of luminol by H2O2. The detection limits for the sensing of Cu2+ ions, Hg2+ ions, and cocaine correspond to 1 nM , 10 nM and 2.5 μM , respectively. These different sensing platforms also reveal impressive selectivities.  相似文献   

2.
3.
The decomposition studies of S-nitrosothiols (RSNO) are important due to their potential role in vivo in connection with the storage and transport of nitric oxide (NO) within the body. Reactions of hydroxyl radicals (OH) with a number of RSNOs (S-nitroso derivatives of N-acetyl-dl-penicillamine, l-cysteinemethylester, N-acetylcysteamine, and dl-penicillamine) in aqueous medium at neutral and acidic pH have been reported in the present study. Radiation chemical technique (steady state and pulse radiolysis) has been utilized for the determination of the reaction rate constants, the end product analyses, and the transient intermediate species. The rate constants for the reaction of OH with the selected RSNOs were determined using a competition kinetic method with 2′-deoxy-d-ribose as the competitor. All the rate constants were found to be of the order of diffusion controlled (1010 M−1 s−1). The degradation yield of RSNOs was found to be quantitative (i.e., G(–RSNO) ≈ G(OH)) at neutral and acidic pH. The major products of decomposition were the respective disulfide (RSSR) and nitrite (NO2 ). A good material balance is also obtained between the degradation yield and the formation of the products (i.e., G(–RSNO) ≈ G(RSSR) + G(NO2 )). The major transient intermediate was the thiyl radical (RS). Its intermediacy was confirmed by making use of the electron transfer reaction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS2−) to RS, which results in the formation of ABTS•− having a transient absorption spectrum with λmax at 410 nm. Based on these results, a generalized reaction mechanism is deduced for the reaction of OH with RSNO.  相似文献   

4.
The water-soluble Ni(II) complex, [Ni(bipy)2(phen-dione)](OAc)2·2H2O (bipy = 2,2′-bipyridine and phen-dione = 1,10-phenanthroline-5,6-dione) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. In fluorimetric studies, the enthalpy and entropy of the reaction between the complex and CT-DNA showed that the reaction is exothermic (ΔH = −123.9 kJ mol−1; ΔS = −323.5 J mol−1 K−1). The competitive binding studies showed that the complex could not release methylene blue completely. The complex showed absorption hyperchromism in its UV–Vis spectrum with DNA. The calculated binding constant, K b obtained from UV–Vis absorption studies was 2 × 105 M−1. Moreover, the complex induced detectable changes in the CD spectrum of CT-DNA, as well as changes in its viscosity. The results suggest that this nickel(II) complex interact with CT-DNA via a groove-binding mode.  相似文献   

5.
Radiative relaxation of Cr(CO)5 was investigated by two techniques: a standard two-pulse photodissociation experiment and by using the branching ratio of its reaction with oxygen as an ion thermometric probe. Photoexcitation at 1064 nm was used to prepare highly vibrationally excited Cr(CO)5. Although the overall oxidation rate changes only slightly upon excitation (actually decreasing by a factor of 1.2 ± 0.1), the primary product distribution shifts dramatically, from Cr(CO)3O (the thermodynamic product) to Cr(CO)3O2 (the kinetic product). The two-pulse photodissociation measurement gave a radiative relaxation rate constant (k rad) of 15 ± 2 s−1, whereas the branching ratio experiments gave a k rad value of 3. 3 ± 0.7 s−1. The large difference between these two values is due to the difference in Cr(CO)5 internal energy ranges probed by the two techniques. In the high internal energy regime interrogated by the two-pulse measurements (about 12,000 to 6000 cm−1), the strongly emitting C-O stretching modes are populated and contribute to fast relaxation. In contrast, the branching ratio measurements remain sensitive to internal energy changes all the way down to thermal energies, where the C-O stretches are depopulated and thus unavailable for radiative relaxation.  相似文献   

6.
The electrochemical behavior of the ofloxacin–copper complex, Cu(II)L2, at a mercury electrode, and the interaction of DNA with the complex have been investigated. The experiments indicate that the electrode reaction of Cu(II)L2 is an irreversible surface electrochemical reaction and that the reactant is of adsorbed character. In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2-DNA, results in the decrease of the peak current of Cu(II)L2. Based on the electrochemical behavior of the Cu(II)L2 with DNA, binding by electrostatic interaction is suggested and a new method for determining nucleic acid is proposed. Under the optimum conditions, the decrease of the peak current is in proportional to the concentration of nucleic acids in the range from 3 × 10−8 to 3 × 10−6 g · mL−1 for calf thymus DNA, from 1.6 × 10−8 to 9.0 × 10−7 g · mL−1 for fish sperm DNA, and from 3.3 × 10−8 to 5.5 × 10−7 g · mL−1 for yeast RNA. The detection limits are 3.3 × 10−9, 6.7 × 10−9 and 8.0 × 10−9 g · mL−1, respectively. The method exhibits good recovery and high sensitivity in synthetic samples and in real samples.  相似文献   

7.
The interaction between DNA and several newly synthesized derivatives of the natural anticancer compound luotonin A has been studied. The results from our work reveal an effective and selective alkaloid/double-stranded DNA (ds-DNA) interaction. In the presence of increasing amounts of ds-DNA, a noticeable fluorescence quenching of the luotonin A derivatives under study was observed. However, this effect did not take place when single-stranded DNA (ss-DNA) was employed. The association constant alkaloids/ds-DNA was calculated by quantitation of such a quenching effect. The influence of other quenchers, namely Co2+ and Br on the native fluorescence of luotonin A and derivatives was also studied, and a remarkable quenching effect was observed for both ions. We have also investigated how by binding DNA the alkaloids could get protected from the external Co2+ and Br quenchers. The Stern–Volmer constants (K SV) for Co2+ and Br quenching effect on the studied alkaloids were considerably reduced (10–50%) after incubation of the compounds in the presence of DNA with regard to the K SV values in absence of DNA. An increase in the fluorescence anisotropy values of luotonins was also produced only in the presence of ds-DNA but not in the case of ss-DNA. To better characterize the nature of that interaction, viscosimetry assays and ethidium bromide displacement studies were conducted. With regard to DNA reference solutions, the viscosity of solutions containing DNA and luotonin A derivatives was reduced or not significantly increased. It was also observed that the studied compounds were unable to displace the intercalating agent ethidium bromide. All of these results, together with the obtained association constants values (K ass = 2.2 × 102 – 1.3 × 103), support that neither covalent nor intercalating interactions luotonin A derivatives/ds-DNA are produced, leading to the conclusion that these alkaloids bind ds-DNA through the minor groove. The specific changes in the fluorescence behavior of luotonin A and derivatives distinguishing between ss-DNA and ds-DNA binding, lead us to propose these compounds as attractive turn-off probes to detect DNA hybridization.  相似文献   

8.
Sensitive fluorescent probes for the determination of hydrogen peroxide and glucose were developed by immobilizing enzyme horseradish peroxidase (HRP) on Fe3O4/SiO2 magnetic core–shell nanoparticles in the presence of glutaraldehyde. Besides its excellent catalytic activity, the immobilized enzyme could be easily and completely recovered by a magnetic separation, and the recovered HRP-immobilized Fe3O4/SiO2 nanoparticles were able to be used repeatedly as catalysts without deactivation. The HRP-immobilized nanoparticles were able to activate hydrogen peroxide (H2O2), which oxidized non-fluorescent 3-(4-hydroxyphenyl)propionic acid to a fluorescent product with an emission maximum at 409 nm. Under optimized conditions, a linear calibration curve was obtained over the H2O2 concentrations ranging from 5.0 × 10−9 to 1.0 × 10−5 mol L−1, with a detection limit of 2.1 × 10−9 mol L−1. By simultaneously using glucose oxidase and HRP-immobilized Fe3O4/SiO2 nanoparticles, a sensitive and selective analytical method for the glucose detection was established. The fluorescence intensity of the product responded well linearly to glucose concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 mol L−1 with a detection limit of 1.8 × 10−8 mol L−1. The proposed method was successfully applied for the determination of glucose in human serum sample.  相似文献   

9.
In this work, a novel dot-blot DNAzyme-linked aptamer assay (DLAA) for protein detection is developed with thrombin as a model protein. A peroxidase-like DNAzyme which serves as the catalytic label is tethered to a 15-mer thrombin-binding aptamer to form a label-free DNAzyme-linked aptamer probe. Based on specific interaction of the aptamer with target protein immobilized on nitrocellulose membrane, a DNAzyme layer is introduced onto the membrane. The DNAzyme can catalyze the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine to produce a colored insoluble product that is apt to be adsorbed onto the nitrocellulose membrane. As a result, blue dots appear on the membrane, in contrast to the colorless background. As the concentration of thrombin increases, the color of dots gets deep. Such a protein concentration-dependent color change can be quantified via an image-processing software, with a detection limit of 0.6 μM. Furthermore, this assay has been applied successfully to the detection of thrombin in biological samples (e.g., human serum), indicating its practicality for bioanalysis.  相似文献   

10.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

11.
A new electrochemical biosensor for determination of hydrogen peroxide (H2O2) has been developed by immobilizing horseradish peroxidase (HRP) on silver colloids (nanosilver) and use of a DNA-functionalized interface. In the presence of the DNA and the nanosilver the immobilized HRP gives a pair of well-defined redox peaks with an electron-transfer rate constant of 3.27 ± 0.91 s−1 in pH 7.0 PBS. The presence of DNA also provides a biocompatible microenvironment for enzyme molecules, greatly amplifies the amount of HRP molecules immobilized on the electrode surface, and improves the sensitivity of the biosensor. Under optimum conditions the biosensor has electrocatalytic activity in the reduction of hydrogen peroxide with linear dependence on H2O2 concentration in the range 1.5 × 10−6 to 2.0 × 10−3 mol L−1; the detection limit is 5.0 × 10−7 mol L−1 at a signal-to-noise ratio of 3. The value of HRP in the composite membrane was found to be 1.62 mmol L−1. These results suggest that the properties of the complex film, with its bioelectrochemical catalytic activity, could make it useful for development of bioelectronic devices and for investigation of protein electrochemistry at functional interfaces.  相似文献   

12.
Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m−2, which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO3–N) L−1 day−1, which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia.  相似文献   

13.
The thermal decomposition of salbutamol (β2 — selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E act=130 kJ mol−1 (for standard sample) and E act=252 kJ mol−1 (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min−1). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min−1). The calculated values were E act=134 kJ mol−1 (for standard sample) and E act=139 kJ mol−1 (for pharmaceutical sample).  相似文献   

14.
A new electrochemiluminescence (ECL) method based on the proximity-dependent surface hybridization assay and Ru(bpy)32+-doped silica nanoparticles (Ru-DSNPs) as labels were proposed for detecting DNA. The hybridization process involves two steps: firstly, the 3′ thiolated capture probe was self-assembled on the gold electrode. Secondly, the proximity-dependent surface hybridization assay was carried out. This proximity-dependent surface hybridization assay depended on the simultaneous recognition of a target DNA by a capture probe and Ru-DSNP-labeled probe and the formation of a duplex complex, which results in the luminophor approach to the electrode surface. Thus, sensitive ECL signals were obtained. Under optimum conditions, the intensity of the ECL of Ru-DSNPs was linearly related to the concentration of the target sequence in the range of 2.0 × 10−15 to 2.0 × 10−11 mol/L. The detection limit was 1.0 × 10−15 mol/L (S/N = 3).  相似文献   

15.
Reactive oxygen species (ROS) are generated dur- ing radiation, respiratory burst, normal metabolic processes and so on. There are enzymatic and non-enzymatic antioxidants such as superoxide dis- mutase (SOD), glutathione peroxidase (GSH-Px), vi- tamin E (VE) and carotenoids that can either inhibit or repair the ROS-induced damage. ROS is essential to maintain physiological homeostasis. However, exces- sive ROS give rise to oxidative damage to proteins, lipids and DNA which related t…  相似文献   

16.
Gold nanoparticles (nano Au)/titanium dioxide (TiO2) hollow microsphere membranes were prepared on the carbon paste electrode (CPE) for enhancing the sensitivity of DNA hybridization detection. The immobilization of nano Au and TiO2 microsphere was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored with EIS using [Fe(CN)6]3−/4− as indicator. The sequence-specific DNA of the 35S promoter from cauliflower mosaic virus (CaMV35S) gene was detected with this DNA electrochemical sensor. The dynamic detection range was from 1.0×10−12 to 1.0×10−8 mol/L DNA and a detection limit of 2.3×10−13 mol/L could be obtained. The polymerase chain reaction (PCR) amplification of the terminator of nopaline synthase (NOS) gene from the real sample of a kind of transgenic soybean was also satisfactorily detected. Supported by the National Natural Science Foundation of China (Grant Nos. 20635020 and 20375020), Doctoral Foundation of the Ministry of Education of China (Grant No. 20060426001) and Natural Science Foundation of Qingdao City (Grant No. 04-2-JZP-8)  相似文献   

17.
A kinetic-potentiometric method is described for the quantitative assay of formaldehyde (HCHO) in pharmaceutical and industrial preparations. It is based on the reaction of HCHO with (ethylenediamine)-Cu(II)-sulfate [Cu(CH2NH2)2(H2O)2] · SO4. The changes in potential, resulting from the release of the Cu(II) cations, are monitored with a Cu(II)-ion selective electrode. The calibration curve for the HCHO is linear in the concentration range 50–250 mg L−1, with a limit of detection of 8.5 mg L−1. The method shows very good reproducibility with an RSD of 2.6% for successive injections (n = 5) of 150 mg L−1 HCHO primary solution, while it is interference free. The method was successfully tested in various industrial and pharmaceutical preparations.  相似文献   

18.
Sodium diethyldithiocarbamate (DDTC-Na) was demonstrated to be a new colorimetric cyanide chemosensor by utilizing an indirect trick. First, some copper ions were added to the colorless aqueous solution of DDTC-Na. Then, the resultant brown solution was studied upon the addition of different anions, including Cl, I, IO3, SO42−, NO2, Br, H2PO4, F, SCN, HSO4, ClO4 and CN. It was observed by naked eyes that the brown solution changed to colorless immediately after the addition of the trace cyanide, but there were no changes towards other anions, making DDTC-Na a good selective cyanide chemosensor in pure water. Supported by the National Natural Science Foundation of China (Grant Nos. 20674059 & 20402011)  相似文献   

19.
The reactions between quaternary ammonium ionic liquids ([Me3NC2H4OH]+[Zn2Cl5], abbrev. Ch-Zn2Cl5) and one-electron oxidant (SO4•−), have been studied by nano-second laser photolysis techniques. The mechanism of monophotonic ionization by 266 nm laser excitation was suggested and the quantum yield was estimated to be 0.04. The second-order decay rate constant of SO4•− oxidation reactions at 460 nm, 1.3 × 109 M−1 s−1, was almost equal to the product rate constant of 1.5 × 109 M−1 s−1 at 320 nm in Ch-Zn2Cl5 aqueous solution showing that the decay and the product were synchronic. Comparison of Ch-Zn2Cl5 with chloride choline and ZnCl2 showed that the anion Zn2Cl5 played an important role in photoionization while choline cation had little function on its photolysis and radiolysis. The present study would be helpful for understanding the application of ionic liquids in the field of electrochemical deposition.  相似文献   

20.
Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg2+) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg2+, the specific coordination between Hg2+ and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H2O2 in the presence of dissolved O2. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H2O2, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg2+ detection with the dynamic concentration range spanning from 1.0 ng L−1 to 10 mg L−1 Hg2+ and a detection limit of 0.5 ng L−1 (2.5 pM) at the 3Sblank level, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号