首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-protein interactions are central to most biological processes and represent a large and important class of targets for human therapeutics. Small molecules containing peptide substituents may mimic regions of interacting proteins and inhibit their interactions. We set out to develop efficient methods to screen for similarities between known peptide structures within proteins and small molecules. We developed a method to rank peptide-compound similarities, that is restricted to small linear motifs in proteins, and to compounds containing amino acid substituents. Application to a search of the PubChem database (5.4 million compounds) using all short motifs on accessible surface areas in a nonredundant set of 11 488 peptides from the protein structure database PDB demonstrated the feasibility of the method for high throughput comparisons and the availability of compounds with comparable substituents: over 6 million compound-peptide pairs shared at least three amino acid substituents, approximately 100 000 of which had an rmsd score of less than 1 A. A Z-score function was developed that compares matches of a compound to different instances of the peptide motif in PDB, providing an appropriate scoring function for comparison among peptide-compound similarities involving different numbers of atoms (while simultaneously enriching for similarities that are likely to be more specific for the protein of interest). We applied the method to searches of known short protein motifs against the National Cancer Institute Developmental Therapeutic Program compound database, identifying a known true positive.  相似文献   

2.
We describe a novel method for ligand-based virtual screening, based on utilizing Self-Organizing Maps (SOM) as a novelty detection device. Novelty detection (or one-class classification) refers to the attempt of identifying patterns that do not belong to the space covered by a given data set. In ligand-based virtual screening, chemical structures perceived as novel lie outside the known activity space and can therefore be discarded from further investigation. In this context, the concept of "novel structure" refers to a compound, which is unlikely to share the activity of the query structures. Compounds not perceived as "novel" are suspected to share the activity of the query structures. Nowadays, various databases contain active structures but access to compounds which have been found to be inactive in a biological assay is limited. This work addresses this problem via novelty detection, which does not require proven inactive compounds. The structures are described by spatial autocorrelation functions weighted by atomic physicochemical properties. Different methods for selecting a subset of targets from a larger set are discussed. A comparison with similarity search based on Daylight fingerprints followed by data fusion is presented. The two methods complement each other to a large extent. In a retrospective screening of the WOMBAT database novelty detection with SOM gave enrichment factors between 105 and 462-an improvement over the similarity search based on Daylight fingerprints between 25% and 100%, when the 100 top ranked structures were considered. Novelty detection with SOM is applicable (1) to improve the retrieval of potentially active compounds also in concert with other virtual screening methods; (2) as a library design tool for discarding a large number of compounds, which are unlikely to possess a given biological activity; and (3) for selecting a small number of potentially active compounds from a large data set.  相似文献   

3.
An analysis method termed similarity search profiling has been developed to evaluate fingerprint-based virtual screening calculations. The analysis is based on systematic similarity search calculations using multiple template compounds over the entire value range of a similarity coefficient. In graphical representations, numbers of correctly identified hits and other detected database compounds are separately monitored. The resulting profiles make it possible to determine whether a virtual screening trial can in principle succeed for a given compound class, search tool, similarity metric, and selection criterion. As a test case, we have analyzed virtual screening calculations using a recently designed fingerprint on 23 different biological activity classes in a compound source database containing approximately 1.3 million molecules. Based on our predefined selection criteria, we found that virtual screening analysis was successful for 19 of 23 compound classes. Profile analysis also makes it possible to determine compound class-specific similarity threshold values for similarity searching.  相似文献   

4.
Similarity searching using molecular fingerprints is a widely used approach for the identification of novel hits. A fingerprint search involves many pairwise comparisons of bit string representations of known active molecules with those precomputed for database compounds. Bit string overlap, as evaluated by various similarity metrics, is used as a measure of molecular similarity. Results of a number of studies focusing on fingerprints suggest that it is difficult, if not impossible, to develop generally applicable search parameters and strategies, irrespective of the compound classes under investigation. Rather, more or less, each individual search problem requires an adjustment of calculation conditions. Thus, there is a need for diagnostic tools to analyze fingerprint-based similarity searching. We report an analysis of fingerprint search calculations on different sets of structurally diverse active compounds. Calculations on five biological activity classes were carried out with two fingerprints in two compound source databases, and the results were analyzed in histograms. Tanimoto coefficient (Tc) value ranges where active compounds were detected were compared to the distribution of Tc values in the database. The analysis revealed that compound class-specific effects strongly influenced the outcome of these fingerprint calculations. Among the five diverse compound sets studied, very different search results were obtained. The analysis described here can be applied to determine Tc intervals where scaffold hopping occurs. It can also be used to benchmark fingerprint calculations or estimate their probability of success.  相似文献   

5.
6.
7.
A statistical approach named the conditional correlated Bernoulli model is introduced for modeling of similarity scores and predicting the potential of fingerprint search calculations to identify active compounds. Fingerprint features are rationalized as dependent Bernoulli variables and conditional distributions of Tanimoto similarity values of database compounds given a reference molecule are assessed. The conditional correlated Bernoulli model is utilized in the context of virtual screening to estimate the position of a compound obtaining a certain similarity value in a database ranking. Through the generation of receiver operating characteristic curves from cumulative distribution functions of conditional similarity values for known active and random database compounds, one can predict how successful a fingerprint search might be. The comparison of curves for different fingerprints makes it possible to identify fingerprints that are most likely to identify new active molecules in a database search given a set of known reference molecules.  相似文献   

8.
9.
10.
Fingerprint scaling is a method to increase the performance of similarity search calculations. It is based on the detection of bit patterns in keyed fingerprints that are signatures of specific compound classes. Application of scaling factors to consensus bits that are mostly set on emphasizes signature bit patterns during similarity searching and has been shown to improve search results for different fingerprints. Similarity search profiling has recently been introduced as a method to analyze similarity search calculations. Profiles separately monitor correctly identified hits and other detected database compounds as a function of similarity threshold values and make it possible to estimate whether virtual screening calculations can be successful or to evaluate why they fail. This similarity search profile technique has been applied here to study fingerprint scaling in detail and better understand effects that are responsible for its performance. In particular, we have focused on the qualitative and quantitative analysis of similarity search profiles under scaling conditions. Therefore, we have carried out systematic similarity search calculations for 23 biological activity classes under scaling conditions over a wide range of scaling factors in a compound database containing approximately 1.3 million molecules and monitored these calculations in similarity search profiles. Analysis of these profiles confirmed increases in hit rates as a consequence of scaling and revealed that scaling influences similarity search calculations in different ways. Based on scaled similarity search profiles, compound sets could be divided into different categories. In a number of cases, increases in search performance under scaling conditions were due to a more significant relative increase in correctly identified hits than detected false-positives. This was also consistent with the finding that preferred similarity threshold values increased due to fingerprint scaling, which was well illustrated by similarity search profiling.  相似文献   

11.
Efficient recognition of tautomeric compound forms in large corporate or commercially available compound databases is a difficult and labor intensive task. Our data indicate that up to 0.5% of commercially available compound collections for bioscreening contain tautomers. Though in the large registry databases, such as Beilstein and CAS, the tautomers are found in an automated fashion using high-performance computational technologies, their real-time recognition in the nonregistry corporate databases, as a rule, remains problematic. We have developed an effective algorithm for tautomer searching based on the proprietary chemoinformatics platform. This algorithm reduces the compound to a canonical structure. This feature enables rapid, automated computer searching of most of the known tautomeric transformations that occur in databases of organic compounds. Another useful extension of this methodology is related to the ability to effectively search for different forms of compounds that contain ionic and semipolar bonds. The computations are performed in the Windows environment on a standard personal computer, a very useful feature. The practical application of the proposed methodology is illustrated by several examples of successful recovery of tautomers and different forms of ionic compounds from real commercially available nonregistry databases.  相似文献   

12.
Ideally, a team of biologists, medicinal chemists and information specialists will evaluate the hits from high throughput screening. In practice, it often falls to nonmedicinal chemists to make the initial evaluation of HTS hits. Chemical genetics and high content screening both rely on screening in cells or animals where the biological target may not be known. There is a need to place active compounds into a context to suggest potential biological mechanisms. Our idea is to build an operating environment to help the biologist make the initial evaluation of HTS data. To this end the operating environment provides viewing of compound structure files, computation of basic biologically relevant chemical properties and searching against biologically annotated chemical structure databases. The benefit is to help the nonmedicinal chemist, biologist and statistician put compounds into a potentially informative biological context. Although there are several similar public and private programs used in the pharmaceutical industry to help evaluate hits, these programs are often built for computational chemists. Our program is designed for use by biologists and statisticians.  相似文献   

13.
In the past few years, NMR has been extensively utilized as a screening tool for drug discovery using various types of compound libraries. The designs of NMR specific chemical libraries that utilize a fragment-based approach based on drug-like characteristics have been previously reported. In this article, a new type of compound library will be described that focuses on aiding in the functional annotation of novel proteins that have been identified from various ongoing genomics efforts. The NMR functional chemical library is comprised of small molecules with known biological activity such as: co-factors, inhibitors, metabolites and substrates. This functional library was developed through an extensive manual effort of mining several databases based on known ligand interactions with protein systems. In order to increase the efficiency of screening the NMR functional library, the compounds are screened as mixtures of 3-4 compounds that avoids the need to deconvolute positive hits by maintaining a unique NMR resonance and function for each compound in the mixture. The functional library has been used in the identification of general biological function of hypothetical proteins identified from the Protein Structure Initiative.  相似文献   

14.
15.
Comparison of compounds similarity is one of the main strategies of virtual screening protocols. Both similarity and dissimilarity concepts are of great importance during the search for new active compounds. Similarity is important due to the assumption that underlies the process of searching for new drug candidates: structurally similar compounds should induce similar biological response. On the other hand, we are also interested in dissimilarity, as we usually aim to find structurally novel ligands. In the study, we compared several approaches of evaluating compound similarity. Various representations and metrics were applied and we indicated the rate of variation of the results that can occur when shifting from one strategy to another. We compared both general similarity of datasets using different approaches, as well as examined the changes in the set of nearest neighbors when changing one compound representation into another, and the influence of representation/metric settings on the clustering outcome. We hope that the study will be of great help during the preparation of virtual screening experiments, stressing the need for careful selection of the way, the compound similarity is assessed. The differences in the results that can be obtained via the application of particular strategy can significantly influence the outcome of comparison studies; therefore, its settings should be carefully selected beforerunning the comparison.  相似文献   

16.
This review focuses on the possibilities and limits of nontarget screening of emerging contaminants, with emphasis on recent applications and developments in data evaluation and compound identification by liquid chromatography-high-resolution mass spectrometry (HRMS). The general workflow includes determination of the elemental composition from accurate mass, a further search for the molecular formula in compound libraries or general chemical databases, and a ranking of the proposed structures using further information, e.g., from mass spectrometry (MS) fragmentation and retention times. The success of nontarget screening is in some way limited to the preselection of relevant compounds from a large data set. Recently developed approaches show that statistical analysis in combination with suspect and nontarget screening are useful methods to preselect relevant compounds. Currently, the unequivocal identification of unknowns still requires information from an authentic standard which has to be measured or is already available in user-defined MS/MS reference databases or libraries containing HRMS spectral information and retention times. In this context, we discuss the advantages and future needs of publicly available MS and MS/MS reference databases and libraries which have mostly been created for the metabolomic field. A big step forward has been achieved with computer-based tools when no MS library or MS database entry is found for a compound. The numerous search results from a large chemical database can be condensed to only a few by in silico fragmentation. This has been demonstrated for selected compounds and metabolites in recent publications. Still, only very few compounds have been identified or tentatively identified in environmental samples by nontarget screening. The availability of comprehensive MS libraries with a focus on environmental contaminants would tremendously improve the situation.  相似文献   

17.
Bioprospecting aims at the identification of biological compounds with novel properties. Identification of such compounds in crude complex biological extracts is a comprehensive challenge. As a large number of extracts must be screened for successful identification of one potential promising lead, rational screening strategies must be developed. Here we report on a novel two stage rational LC-MS strategy of extracts already pre-screened and proven to contain bioactive compound(s). All extracts are initially fractionated using one and the same LC condition with parallel mass spectrometric detection. Fractions containing bioactive compound(s) are then subjected to a second fractional stage using two different chromatographic conditions. Mass detection is also included at this stage, and a cross-matching algorithm for comparison of processed mass chromatograms from the two dimensions was developed. The algorithm reports only masses present in bioactive fractions in both dimensions and enable therefore an efficient identification of potential masses that causes the bioactivity. This mass list can be used to search in natural compound database(s) for a rapid evaluation if the mass belongs to an already identified compound or if it is a potentially new one. This strategy enables thorough screening of several hundred crude extracts in one week on one single instrument.  相似文献   

18.
19.
20.
The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号