首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王江波  丁俊升  王晓东  杜忠华  高光发 《爆炸与冲击》2022,42(2):023101-1-023101-11
粗骨料作为混凝土材料组成最主要的部分,对混凝土力学性能和破坏模式有着很重要的影响。为了研究粗骨料平均粒径对混凝土动态力学性能的影响规律,针对不同平均粗骨料平均粒径(6、12、24 mm)的混凝土和砂浆材料进行了一系列SHPB试验,得到了不同应变率下各试件的应力-应变曲线,并对每种材料的动态增长因子(dynamic increase factor,DIF)与应变率的对数进行了线性拟合。结果表明:砂浆和混凝土材料的抗压强度具有明显的应变率效应,其动态抗压强度随着应变率的增加而逐渐增大,应力-应变曲线呈现相似的变化趋势;在相同的动态应变率条件下,平均粗骨料粒径为12 mm的混凝土的动态抗压强度最大,这与准静态条件下砂浆抗压强度最大截然不同;不同粗骨料粒径混凝土材料的应变率强化系数均大于砂浆材料,且随着粗骨料无量纲尺寸的增大,混凝土材料的应变率强化因子呈现先增大后减小的趋势。  相似文献   

2.
Uniaxial compression tests are the most common tests for characterizing the strength of concrete-like materials. The dynamic compression strength of concrete-like material is typically obtained by Split Hopkinson Pressure Bar (SHPB) tests. The increase in material strength under dynamic loading is usually attributed to the strain rate effect and modelled with a dynamic increase factor (DIF). However, it was observed by some researchers that the radial inertial confinement caused apparent increase of dynamic strength of concrete-like specimen in SHPB tests. They attributed the material strength increase to this inertial effect, instead of the strain rate effect. In the present study, numerical analyses are performed to investigate the compressive behaviour of concrete-like material at high strain rates. A homogeneous macroscale model and a heterogeneous mesoscale model are developed in the study. In the macroscale model, the material is assumed to be homogeneous and isotropic. In the mesoscale model, the test sample is modelled as a three-phase composite consisting of aggregate, mortar matrix and interfacial transaction zone (ITZ) between the aggregate and the mortar matrix. The aggregate is assumed to be circular and the ITZ is modelled as a thin boundary around the aggregate. In the both models, the materials are assumed to be insensitive to the strain rate first. Therefore, the obtained strength enhancement is only due to the inertial confinement. Strain rate sensitive material properties are then used in the two models in the calculations. Numerical simulations of the concrete samples under compression at different strain rates are carried out. The relative contribution of the inertial effect and the strain rate effect on the compressive strength DIF is examined based on the numerical results. The failure process of concrete specimen is also studied.  相似文献   

3.
对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。  相似文献   

4.
The compressive behavior of open-cell aluminum alloy foam and stainless steel woven textile core materials have been investigated at three different deformation rate regimes. Quasi-static compressive tests were performed using a miniature loading frame, intermediate rates were achieved using a stored energy Kolsky bar, and high strain rate tests were performed using a light gas gun.In agreement with previous studies on foam materials, the strain rate was not found to have a significant effect on the plateau stress of metallic foams. For all the tests, real time imaging of the specimen combined with digital image correlation analysis allowed the determination of local deformation fields and failure modes. For the Kolsky bar tests, the deformations in the foam specimen were found to be more distributed than for the quasi-static test, which is attributed to moderate inertia effects. The differences in failure mode are more dramatic for the gas gun experiments, where a full compaction shock wave is generated at the impact surface. The stresses in front and behind the shock wave front were determined by means of direct and reverse gas gun impact tests, i.e., stationary and launched specimen, respectively. A one-dimensional shock wave model based on an idealized foam behavior is employed to gain insight into the stress history measurements. We show that the predictions of the model are consistent with the experimental observations. Woven textile materials exhibited moderate dependence of strength on the deformation rate in comparison with open-cell foam materials.  相似文献   

5.
基于74mm直径分离式Hopkinson杆(SHPB)实验平台进行了混凝土杆的一维应力层裂实验.采用超高速相机(采样频率:2 $\mu$s/frame)结合数字图像相关法(DIC),记录混凝土试件中的动态位移场实时变化情况,探讨了混凝土在拉伸断裂过程中的表面位移场及速度场演化规律.针对实验中出现的多重层裂现象,基于一维应力波传播理论,指出各个位置在发生层裂时,其最大拉应力均由透射压缩波与反射拉伸波叠加而成,各处层裂发生时均处于一维应力状态.并提出了根据层裂位置左右两点速度趋势变化判断层裂发生时刻的判据.该判据可以给出所有层裂的起裂时间,结合DIC分析直接给出了混凝土多重层裂应变.结果显示混凝土的拉伸强度具有明显的应变率效应,在30 s$^{-1}$的应变率下,其拉伸强度的动态增强因子(DIF)可以达到5.与传统的波叠加法和自由面速度回跳法相比,DIC全场分析法不受加载波形限制,可以精确给出每个层裂的位置和起裂时间,从而得到试件在高应变率加载下不同位置处的断裂应变、拉伸强度及相应应变率,提高了测量效率.   相似文献   

6.
A novel Kolsky torsion bar technique is developed and successfully utilized to characterize the high strain rate shear response of a rate-independent end-linked polydimethylsiloxane (PDMS) gel rubber with a shear modulus of about10 KPa. The results show that the specimen deforms uniformly under constant strain rate and the measured dynamic shear modulus follows reasonably well the trend determined by dynamic mechanical analysis (DMA) at lower strain rates. For comparison, Kolsky compression bar experiments are also performed on the same gel material with annular disk specimens. The dynamic moduli obtained from compression experiments, however, are an order of magnitude higher than those obtained by the torsional technique, due to the pressure caused by the radial inertia and end constraints.  相似文献   

7.
This paper presents the results of dynamic compression and splitting-tensile tests of cardiff fiber reinforced concrete (CARDIFRC) composite using the Kolsky technique and its modification. The strength and deformation characteristics of fiber-reinforced concrete were determined experimentally at high strain rates. The mechanical characteristics were found to depend on the strain rate and stress rate. A uniform interpretation of the rate effects of fracture of the tested fiber-reinforced concrete is given on the basis of a structural-temporal approach. It is shown that the time dependences of both the compressive and tensile strengths of fiber reinforced concrete are well calculated using the incubation time criterion.  相似文献   

8.
Material characterization at high strain rates under simultaneous compression and shear loading has been a challenge due to the differing normal and shear wave speeds. An experimental technique utilizing the compression Kolsky bar apparatus was developed to apply dynamic compression and shear loading on a specimen nearly simultaneously. Synchronization between the compression and shear loading was realized by generating the torsion wave near the specimen which minimizes the time difference between the arrival of the compression and torsion waves. This modified Kolsky bar makes it possible to characterize the dynamic response of a material to combined compression and shear impact loading. This method can also be applied to study dynamic friction behavior across an interface under controlled loading conditions. The feasibility of this method is demonstrated in the dynamic characterization of a simulant polymer bonded explosive material.  相似文献   

9.
为研究应变率对钢筋与混凝土界面粘结性能的影响,利用高速拉伸试验机进行了光圆钢筋的动态拔出实验。通过合理设计加载夹具和测试方法,得到不同应变率下光圆钢筋的“粘结-滑移”全程曲线。实验结果表明:随着应变率的增大,钢筋-混凝土界面的粘结强度显著提高,且界面失效形式由拔出失效为主转变为混凝土试件的破裂破坏为主;粘结强度的动态增强因子(fDIF)随应变率的增长斜率明显可以分为低应变率和高应变率两个区段。低应变率下,fDIF 增长较为缓慢;而高应变率下,fDIF快速增长;转变应变率约为33 s^-1。  相似文献   

10.
利用玄武岩纤维和水泥基材料,通过一定配比融合制成了在静态拉伸试验中呈现多缝开裂、应变硬化、极限拉伸应变0.5%以上的玄武岩纤维高延性水泥基复合材料(basalt fiber engineered cementitious composites, BF-ECCs)。用分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置对不同玄武岩纤维掺量的水泥基复合材料进行动态压缩和动态劈裂试验。结果表明:(1)在压、拉两种应力状态下,玄武岩纤维对水泥基复合材料的静态强度、动态强度均有增强,且高应变率下玄武岩纤维对抗压强度动态增幅较小,对劈裂强度动态增幅较大;(2) BF-ECC的抗压强度和劈裂强度均随应变率升高而显著提高,两者均可以采用动态增强因子(dynamic increase factor, DIF)反映动态强度的增幅,但劈裂强度的应变率敏感性强于抗压强度;(3)依据试验得到的普通水泥混凝土速率敏感性的CEB-FIP方程(2010)不适用于BF-ECCs。  相似文献   

11.
During a Kolsky bar, also known as a split Hopkinson pressure bar (SHPB), experiment, stress equilibrium and strain rate constancy conditions directly contribute to the measurement quality for rate-sensitive materials. A Kolsky bar specimen is initially at rest, and then gradually accelerated to a desired rate. Stress equilibrium is incrementally achieved by multiple stress pulse reflections inside the specimen to reach the desired mean stress. The critical time to achieve constant strain rate and equilibrium stress depends on the impedance mismatch between the bars and the specimen. This paper examined this critical time based on using linear elastic specimens under uniaxial compression. In the first part, the critical time is experimentally measured for PMMA specimens loaded by aluminum, titanium, and steel bars using linear ramp incident pulses. The results show that increasing impedance mismatch increases the time to reach a constant rate, while the time to satisfy equilibrium remains nearly the same. In the second part, optimal bilinear-shaped incident loadings were evaluated and shown to achieve both conditions faster than linear loadings. The time to satisfy both conditions was mapped via simulation using various bilinear pulses over a wide range of impedance mismatches. The analysis shows bilinear loadings with initial rise time between 1.75 and 2.15 transits in the sample require minimum time to equilibrium. There exists an optimum region of bilinear loadings that can reduce the time to reach constant rate. Within such region, the bilinear slope ratio can be approximated to be a reciprocal function of initial rise time.  相似文献   

12.
In this study, we experimentally determined the dynamic response of a damaged borosilicate glass at different temperatures, damage levels and confinement pressures. The initiation and evolution of damage during the loading process were also examined. An improved double-pulse loading Kolsky compression bar, integrated with a non-contact high temperature testing system and a single loading momentum trap system, was used to characterize the high-rate mechanical behavior of a damaged borosilicate glass. Specimen deformation was interrupted at different strain levels to reveal damage evolution with increasing strain. The results show that the equivalent flow strength of damaged borosilicate glass depends linearly on the hydrostatic pressure; however the variation of temperature has little effects on the strength. Through post-mortem SEM analysis, the failure in an intact specimen was found to be initiated in the form of axial splitting. Further loading on the splitted specimens induced catastrophic buckling of the columns which converted the specimens into small fragments. Shear zones became evident in the compacted fragments as deformation further accumulated. The propagation of the shear zones to the entire specimen eventually led to full comminution of the borosilicate glass material.  相似文献   

13.
重组竹是一种新型竹基复合材料,其力学性能优于落叶松等木材。为评价重组竹在动态加载下的顺纹抗冲击力学性能,以密度1.06 g/cm3、含水率8.52%、龄期3~5年的毛竹基重组竹为研究对象,通过准静态单轴压缩和循环加卸载以及动态加载实验,研究了重组竹加载变形过程、各项力学性能指标以及对应变率的敏感性。结果表明:重组竹顺纹压缩过程可以分为弹性变形和弹塑性变形阶段,破坏类型为延性破坏,其各项强度指标随应变率的提高而提高,动态增长因子与应变率之间呈现线性关系,斜率为0.0024;重组竹压缩过程中的应变比能与应变之间呈线性关系,且随应变率的增长而增大,证明其吸能能力随着应变率的增大而提高。实验结果证明,重组竹顺纹具有良好的抗冲击力学性能和显著的应变率效应。  相似文献   

14.
Dynamic response of a cellular sandwich core material, balsa wood, is investigated over its entire density spectrum ranging from 55 to 380 kg/m3. Specimens were compression loaded along the grain direction at a nominal strain rate of 3 × 103 s−1 using a modified Kolsky (split Hopkinson) bar. The dynamic data are discussed and compared to those of quasi-static experiments reported in a previous study (Mech. Mater. 35 (2003) 523). Results show that while the initial failure stress is very sensitive to the rate of loading, plateau (crushing) stress remains unaffected by the strain rate. As in quasi-static loading, buckling and kink band formation were identified to be two major failure modes in dynamic loading as well. However, the degree of dynamic strength enhancement was observed to be different for these two distinct modes. Kinematics of deformation of the observed failure modes and associated micro-inertial effects are modeled to explain this different behavior. Specific energy dissipation capacity of balsa wood was computed and is found to be comparable with those of fiber-reinforced polymer composites.  相似文献   

15.
A rigorous experimental and numerical assessment is made of the benefits and limits of miniaturization in the Kolsky bar system. The primary issues that arise in very high strain rate testing (stress equilibration, inertial effects, wave dispersion, friction, and controllability of deformations) are addressed through experiments coupled with explicit finite element analyses. A miniaturized Kolsky bar system that includes the input bar is developed, together with the use of the laser occlusive radius detector to obtain local measurements of specimen strain during the very high rate deformations. It is demonstrated that this miniaturized Kolsky bar system can be used to provide fully validated results, including the explicit determination of equilibration, over a very wide range of strain rates (1×103 to 5×104 s−1). The desired high strain rate can be achieved even at low accumulated strains, and the total strain developed can be controlled very effectively. Specific conditions are developed for determining the range of utility of the technique for a given material. The technique is applied to the characterization of 6061-T651 aluminum, and the results are compared with the results obtained using a conventional Kolsky bar.  相似文献   

16.
Uniaxial quasi-static compression, uniaxial dynamic compression and confined dynamic compression experiments were performed to characterize the failure of Aluminum Nitride (AlN) using a servo hydraulic machine and a modified Kolsky bar set-up respectively. High-speed digital cameras are used to visualize the failure processes. A summary of the available experimental results, including that in the literature, shows that the compressive strength of the AlN is sensitive to strain rate in the range from 10−3 to 103 s−1, and that the deviatoric strength of AlN is linearly dependent on pressure at low pressures and nearly independent of pressure above a transitional pressure (about 2 GPa). TEM characterization of fragments obtained after dynamic loading is used to characterize the deformation mechanisms in the AlN for varying confinement. The transition in the pressure dependent behavior is shown to be the result of a change of deformation mechanism. Classical wing crack micromechanics is used to predict the transition in the deformation mechanism, and to explain the observed behavior at low pressure.  相似文献   

17.
混凝土动态双轴拉压破坏准则细观数值模拟研究   总被引:3,自引:3,他引:0  
金浏  李健  余文轩  杜修力 《力学学报》2022,54(3):800-809
正常服役期内的混凝土结构往往处于复杂应力状态,并且不可避免地会受到偶发动力载荷作用.对于复杂载荷作用下的混凝土力学性能研究,破坏准则是基础.受试验设备等条件限制,现有的动态双轴拉压破坏准则形式复杂、缺乏更高应变率和侧应力比范围且尚未综合考虑应变率和侧应力比的耦合作用.为进一步提出适用范围更高且更准确的混凝土动态双轴拉压...  相似文献   

18.
动强度和能量耗散规律是研究混凝土动力特性的主要内容。为探究混凝土在冲击荷载作用下的动态力学、变形以及能量演化特征,利用直径为100 mm的霍普金森杆装置对骨料率为0、32%、37%和42%的混凝土试样,分别进行了冲击速度为5、6、7 m/s的冲击压缩试验。探讨了冲击速度和骨料率对试样变形、动强度以及分形维数的影响,建立了动强度关于冲击速度和骨料率的表达式,并对试样吸收能和裂纹表面能之间的关系进行了对比分析。结果表明:混凝土试样破坏时出现了变形滞后现象,破坏形式主要以劈裂拉伸破坏为主;动强度随冲击速度、骨料率的增大而增大,用所建动强度公式可以较好地预估混凝土动强度;混凝土破坏碎块分形维数、吸收能和裂纹表面能均随冲击速度的增大而增大,随骨料率的增大而减小,且吸收能始终高于裂纹表面能,当骨料率为37%时,吸收能转化率最高,约91%转化为裂纹表面能。  相似文献   

19.
20.
Static and dynamic behavior of concrete and granite in tension with damage   总被引:2,自引:0,他引:2  
A series of dynamic and static tensile-splitting experiments were performed on concrete and granite specimens to investigate the effect of induced damage on their tensile strength. These experiments were performed as part of a larger effort investigating the penetration process into the two materials. The strain rate each specimen was subjected to remained constant for these experiments, while the level of induced damage was increased. Damage was induced into the specimens through repeated drop-weight impacts and quantified using a statistical technique. The dynamic splitting experiments were performed using a split Hopkinson pressure bar (SHPB), while the static splitting experiments were conducted per the ASTM standard procedures D3967 and C496. As part of the investigation, photoelastic dynamic tensile-splitting experiments were also performed to establish the validity of using static relations for the determination of dynamic tensile strength. The experiments showed that the static splitting strength was highly dependent on the orientation of the induced damage with regard to the applied loading; however the dynamic tensile strength decreased with increasing damage with no apparent dependency on the random damage orientation. Photoelastic experiments have shown that the mechanism of failure changes for the dynamically tested damaged specimens, reducing their dependence on damage orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号