首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stereo digital image correlation (DIC) is now a standard measurement technique. It is, therefore, important to quantify the measurement uncertainties when using it for experiments. Because of the complexity of the DIC measurement process, a Monte Carlo approach is presented as a method to discover the magnitude of the stereo-DIC calibration uncertainty. Then, the calibration errors, along with an assumed sensor position error, are propagated through the stereo-triangulation process to find the uncertainty in three-dimensional position and object motion. Details on the statistical results of the calibration parameters are presented, with estimated errors for different calibration targets and calibration image quality. A sensitivity study was done to look at the influence of the different calibration error sources. Details on the best approach for propagating the errors from a statistical perspective are discussed, including the importance of using a “boot-strap” approach for error propagation because of the covariance of many of the calibration parameters. The calibration and error propagation results are then interpreted to provide some best-practices guidelines for DIC.  相似文献   

2.
Yu  L.  Pan  B. 《Experimental Mechanics》2021,61(7):1121-1142
Background

Developments in digital image correlation (DIC) in the last decade have made it a practical and effective optical technique for displacement and strain measurement at high temperatures.

Objective

This overview aims to review the research progress, summarize the experience and provide valuable references for the high-temperature deformation measurement using DIC.

Methods

We comprehensively summarize challenges and recent advances in high-temperature DIC techniques.

Results

Fundamental principles of high-temperature DIC and various approaches to generate thermal environment or apply thermal loading are briefly introduced first. Then, the three primary challenges presented in performing high-temperature DIC measurements, i.e., 1). image saturation caused by intensified thermal radiation of heated sample and surrounding heating elements, 2) image contrast reduction due to surface oxidation of the heated sample and speckle pattern debonding, and 3) image distortion due to heat haze between the sample and the heating source, and corresponding countermeasures (i.e., the suppression of thermal radiation, fabrication of high-temperature speckle pattern and mitigation of heat haze) are discussed in detail. Next, typical applications of high-temperature DIC at various spatial scales are briefly described. Finally, remaining unsolved problems and future goals in high-temperature deformation measurements using DIC are also provided. 

Conclusions

We expect this review can guide to build a suitable DIC system for kinematic field measurements at high temperatures and solve the challenging problems that may be encountered during real tests.

  相似文献   

3.
In practice, out-of-plane motions usually are not avoidable during experiments. Since 2D–DIC measurements are vulnerable to parasitic deformations due to out-of-plane specimen motions, three-dimensional digital image correlation (StereoDIC or 3D–DIC) oftentimes is employed. The StereoDIC method is known to be capable of accurate deformation measurements for specimens subjected to general three-dimensional motions, including out-of-plane rotations and displacements. As a result, there has been limited study of the deformation measurements obtained when using StereoDIC to measure the displacement and strain fields for a specimen subjected only to out-of-plane rotation. To assess the accuracy of strain measurements obtained using stereovision systems and StereoDIC when a specimen undergoes appreciable out of plane rotation, rigid body out-of-plane rotation experiments are performed in the range ?400?≤?θ?≤?400 using a two-camera stereovision system. Results indicate that (a) for what would normally be considered “small angle” calibration processes, the measured normal strain in the foreshortened specimen direction due to specimen rotation increases in a non-linear manner with rotation angle, with measurement errors exceeding ±1400με and (b) for what would normally be considered “large angle” calibration processes, the magnitude of the errors in the strain are reduced to ±300με. To theoretically assess the effect of calibration parameters on the measurements, two separate analyses are performed. First, theoretical strains due to out-of-plane rigid body rotation are determined using a pinhole camera model to project a series of three-dimensional object points into the image plane using large angle calibration parameters and then re-project the corresponding sensor plane coordinates back into the plane using small angle calibration parameters. Secondly, the entire imaging process is also simulated in order to remove experimental error sources and to further validate the theory. Results from both approaches confirmed the same strain error trends as the experimental strain measurements, providing confidence that the source of the errors is the calibration process. Finally, variance based sensitivity analyses show that inaccuracy in the calibrated stereo angle parameter is the most significant factor affecting the accuracy of the measured strain.  相似文献   

4.
Evaluation of stresses in structures such as bridges, buildings, pipelines and railways is challenging because the loads cannot easily be manipulated to allow direct measurements. This paper focuses on the development of a method that combines the hole-drilling technique with Digital Image Correlation (DIC) to evaluate these difficult-to-measure structural stresses. The hole-drilling technique works by relating local displacements caused by the removal of a small amount of stressed material to the original stresses within the drilled hole. Adaptation of this method to measure structural stresses requires scaling up the hole size and modifying the calculation approach to measure deeper into a material. DIC provides a robust means to measure full-field displacements that can easily be scaled to different hole sizes and corrected for typical artifacts that occur in practical on-site measurements. There are two primary areas of investigation: the adaptation of the DIC/hole-drilling method to measure structural stresses and the development of a correction method to remove coexisting stresses such as residual and machining stresses from the measurement. Experimental measurements are made to demonstrate the measurement method on different structure types including the example practical problem of measuring thermally induced stresses in railroad tracks.  相似文献   

5.
Fayad  S. S.  Seidl  D. T.  Reu  P. L. 《Experimental Mechanics》2020,60(2):249-263

Digital image correlation (DIC) is an optical metrology method widely used in experimental mechanics for full-field shape, displacement and strain measurements. The required strain resolution for engineering applications of interest mandates DIC to have a high image displacement matching accuracy, on the order of 1/100th of a pixel, which necessitates an understanding of DIC errors. In this paper, we examine two spatial bias terms that have been almost completely overlooked. They cause a persistent offset in the matching of image intensities and thus corrupt DIC results. We name them pattern-induced bias (PIB), and intensity discretization bias (IDB). We show that the PIB error occurs in the presence of an undermatched shape function and is primarily dictated by the underlying intensity pattern for a fixed displacement field and DIC settings. The IDB error is due to the quantization of the gray level intensity values in the digital camera. In this paper we demonstrate these errors and quantify their magnitudes both experimentally and with synthetic images.

  相似文献   

6.
Mathew  M.  Wisner  B.  Ridwan  S.  McCarthy  M.  Bartoli  I.  Kontsos  A. 《Experimental Mechanics》2020,60(8):1103-1117
Background

Digital Image Correlation (DIC) is a length scale independent surface pattern matching and tracking algorithm capable of providing full field deformation measurements. The confident registration of this pattern within the imaging system becomes key to the derived results. Practically, conventional speckling methods use non-reliable, non-repeatable patterning methodologies including spray paints and air brushing leading to increased systematic and random errors based on the user’s experience.

Objective

A methodology to develop a speckle pattern tailored to the imaging and experimental conditions of the given system is developed in this paper.

Methods

In this context, a novel bio-inspired speckle pattern development technique is introduced, leveraging spatial imaging parameters in addition to frequency characteristics of speckle patterns, enhancing the results obtained through DIC. This novel technique leverages gradient parameters in the frequency spectrum obtained from patterns fabricated using a bio-templating manufacturing technique.

Results

The analysis presented shows that optimized gradient features alongside tailored spatial characteristics reduce errors while increasing the usefulness of DIC results across the entire region of interest. With this new approach, gradient information is derived from the bio-templated pattern, extracted, optimized and then convolved with spatial properties of a numerically generated 2D point clouds which can then be transferred onto actual specimens. Numerical error analysis shows that the optimized patterns result in significant reduction in root mean square error compared to conventional speckling methods.

Conclusions

Physical experiments show the scalability of this optimized pattern to allow for varying working distances while consistently maintaining a lower error threshold compared to conventional speckling techniques.

  相似文献   

7.
Background:

Digital Image Correlation (DIC) is based on the matching, between reference and deformed state images, of features contained in patterns that are deposited on test sample surfaces. These features are often suitable for a single scale, and there is a current lack of multiscale patterns capable of providing reliable displacement measurements over a wide range of scales.

Objective:

Here, we aim to demonstrate that a pattern based on a fractal (self-affine) surface would make a suitable pattern for multiscale DIC.

Methods:

A method to numerically generate patterns directly from a desired auto-correlation function is introduced. It is then enhanced by a Mean Intensity Gradient (MIG) improvement process based on grey level redistribution. Numerical experiments at multiple scales are performed for two different imposed displacement fields and results for one of the patterns generated are compared with those obtained for a random pattern and a Perlin noise one.

Results:

The proposed pattern is shown to lead to DIC errors comparable to those found with the two others for the first scales, but has much greater robustness. More importantly, the pattern generated here exhibits stable errors and robustness with respect to the scale whereas these two outputs become significantly degraded for the other two patterns as the scale increases.

Conclusions:

As a result, scale invariance properties of the pattern based on fractal surfaces correspond to scale invariance in DIC errors as well. This is of great interest regarding the use of such patterns in multiscale DIC.

  相似文献   

8.
Digital image correlation (DIC) is a surface deformation measurement technique for which accuracy and precision are sensitive to image quality. This work presents cross polarization, the use of orthogonal linear polarizers on light source(s) and camera(s), as an effective method for improving optical DIC measurements. The benefits of cross polarization are characterized through quantitative and statistical comparisons from two experiments: rigid body translation of a flat sample and uniaxial tension of a superelastic shape-memory alloy (SMA). In both experiments, cross polarization eliminated saturated pixels that degrade DIC measurements, and increased image contrast, which enabled higher spatial precision by using smaller subsets. Subset sizes are usually optimized for correlation confidence interval (typically with subsets of 21×21 px or larger), but can be decreased to achieve the highest possible spatial precision at the expense of increased correlation confidence intervals. Smaller subset sizes (such as 9×9 px) require better images to maintain correlation within error thresholds. By comparing DIC results from a uniaxial SMA tension test with unpolarized and cross-polarized images, we show that for 9×9 px subsets, the loss of valid DIC data points was reduced almost ten-fold with cross polarization. The only disadvantage we see to cross polarization is the decrease in specimen illumination due to transmission losses through the polarizers, which can easily be accommodated with sufficiently intense light sources. With the installation of relatively inexpensive linear polarizing filters, an optimum optical DIC setup can provide even better DIC measurements by delivering images without saturated pixels and with higher contrast for increased DIC spatial precision.  相似文献   

9.
Being the two primary approaches for full-field kinematics measurements,both subset-based local digital image correlation(DIC) and finite element-based global DIC have been extensively studied.Nowadays,most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency.However,several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements.As such,thoroughly examining the performance of these two different DIC methods seems to be highly necessary.Here,the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first.Subsequently,based on the same algorithmic details and parameters during analyses of numerical and real experiments,the performance of the different DIC approaches is fairly compared.Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element(subset) size is no less than 11 pixels.  相似文献   

10.
By comparing two digital images of a test planar specimen surface recorded in different configurations, two-dimensional digital image correlation (2D-DIC) provides full-field displacements to sub-pixel accuracy and full-field strains in the recorded images. For the 2D-DIC systems using an optical lens, a simple pinhole imaging model is commonly used to describe the linear relationship between the measured sensor plane displacements and the actual displacements in the object surface. However, in a practical measurement, various unavoidable disadvantageous factors, such as small out-of-plane motion of the test object surface occurred after loading, small out-of-plane motion of the sensor target due to the self-heating or temperature variation of a camera, and geometric distortion of the imaging lens, may seriously impair or slightly change the originally assumed linear correspondence. In certain cases, these disadvantages may lead to significant errors in displacements and strains measured by 2D-DIC. In this work, the measurement errors of 2D-DIC due to the above three disadvantageous factors are first described in detail. Then, to minimize the errors associated with these disadvantages, a high-accuracy 2D-DIC system using a bilateral telecentric lens is established. The performance of the established 2D-DIC system and other two 2D-DIC systems using a conventional lens and an object-side telecentric lens are investigated experimentally using easy-to-implement stationary, out-of-plane and in-plane rigid body translation tests. A detailed examination reveals that a high-quality bilateral telecentric lens is not only insensitive to out-of-plane motion of the test object and the self-heating of a camera, but also demonstrates negligible lens distortion. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively compare the axial and transversal strains measured by the proposed 2D-DIC system and those measured by strain gage rosettes. The perfect agreement between the two measurements further verifies the accuracy of the established 2D-DIC system.  相似文献   

11.
数字图像相关方法中散斑图的质量评价研究   总被引:4,自引:0,他引:4  
潘兵  吴大方  夏勇 《实验力学》2010,25(2):120-129
在利用数字图像相关方法测量物体表面变形时,被测物体表面必需覆盖有灰度随机分布的散斑场,该散斑场作为试件表面变形信息的载体随试件一起变形。在实际情况下,不同的散斑场会显示出完全不同的灰度分布特征,并对数字图像相关方法的测量结果有着重要影响。因此如何定量评价散斑图的优劣是数字图像相关方法中一个重要的基本问题,也是该方法的使用者非常关心的问题。基于最近数字图像相关方法基本理论研究的进展,本文提出平均灰度梯度这一新参数用于散斑图质量的评价。为证实该参数的有效性,本文对五幅明显不同的散斑图进行了精确平移,并将数字图像相关方法测量的位移与预加的平移量进行比较,分析了位移测量结果的均值误差和标准差。结果显示位移测量结果的均值误差和标准差均与散斑图的平均灰度梯度有关,一个好的散斑图应该具有较大的平均灰度梯度。  相似文献   

12.
Summary In this paper, the work presented in [1] is extended to study higher-order approximations of nonlinear effects in a bar. It has been found that long bending waves, being the low-frequency modes involved in resonant triads, are stable against small perturbations. Consequently, a bending wave with group velocity which is less than that of longitudinal waves should behave as a linear quasi-harmonic wavetrain. On the other hand, one may expect self-modulation instability of intense bending wavetrains during the long-time evolution. This paper overcomes such a contradiction. To describe the nonlinear dynamics in detail, one should allow for higher-order approximation effects in the model. Such effects are associated with the diffusion of linear wave packets due to different group velocities, and amplitude dispersion caused by nonlinearity. Within the second-order approximation analysis, an amplitude modulation is indeed experienced for intense bending waves. As a result, envelope solitons can be formed from unstable bending wavetrains. The group matching of long longitudinal and short bending waves, being a particular case of the self-modulation, is of special interest as a limit case of the triple-wave resonant interactions. It demonstrates the relation between the first- and the second-order approximation effects. Accepted for publication 20 July 1996  相似文献   

13.
This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis–Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.  相似文献   

14.
A holographic interferometric technique, combining an image hologram with a grating approach, is proposed for three-dimensional deformation measurements on opaque planar object surfaces. In this technique, the holographic plate is brought close to the object surface, onto which a high-frequency crossed-line diffraction grating has been replicated. The grating surface produces multiple object waves rather than the usual diffusely reflected object waves. The double-exposed single holograms can be reconstructed at multiple off-axis angles. Four independent high-contrast fringe patterns are extracted simultaneously. Displacement vectors over the entire measurement area are separated in three orthogonal directions. The resultant displacements are presented as three-dimensional meshed plots and topographic contour maps. The optical system for both recording and reconstruction of the holograms has been simplified compared to conventional holographic interferometry. Experimental errors associated with fringe readout and system geometry are reduced because of the sharp images and the well-defined spatial orientation in the reconstruction system.  相似文献   

15.
The interaction of rarefaction waves of different shapes with wet water foams is studied experimentally. It is found that the observed values of the pressure are greater, while the surface velocity is lower than the corresponding values predicted by the pseudogas model. The foam breakdown starts as the pressure decreases by 0.3 atm relative to the initial pressure. During downstream propagation of the rarefaction-wave leading edge the propagation velocity decreases.Using of water-based foams as effective screens for damping blast waves in different technological processes has caused considerable interest in studying wave propagation in such systems. The pressure wave dynamics in a foam have been investigated in much detail, both experimentally and theoretically [1–3]. However, the interaction of rarefaction waves with foam has practically never been studied, although it was mentioned in [4] that the unloading phase following the compression wave phase is one of the factors defining the damaging action of blast waves. Besides blast-wave damping, rarefaction wave propagation takes place if such waves are used to breakup foam in oil-producing wells [5].Below, the interaction of rarefaction waves of different shapes with wet water foams is studied. The vertical shock tube described in detail in [3] was used in these experiments.Brest. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 76–82, March–April, 1995.  相似文献   

16.
Three-dimensional interfacial waves that develop on the free surface of falling liquid films are known to intensify heat and mass transfer. In this context, the present paper studies the effect of electrostatic forces applied to a falling film of dielectric liquid on its three-dimensional nonlinear wave dynamics. Therefore, measurements of the local film thickness using a confocal chromatic imaging method were taken, and the complex wave topology was characterized through photography. The experiments show a complex interaction between the electric field and the hydrodynamics of the falling film, whereby electrostatic forces were found to both increase and decrease wave peak height in different regions of the wave. Additionally, an electrically induced breakup of the three-dimensional wave fronts, which leads to a locally doubled frequency in streamwise direction, is found. The ability to influence the wave topology demonstrated here opens the possibility to optimize heat transfer processes in falling liquid films.  相似文献   

17.
Numerical simulation of nonlinear waves to reproduce the laboratory measurements has been a topic of great interest in the recent past. The results reported in the literature are mainly focused on qualitative comparison or on the relative errors between the numerical simulation and measurements in laboratory and hence lack in revealing the existence of phase shift in nonlinear wave simulation. In this paper, the simulation of nonlinear waves in mixed Eulerian and Lagrangian framework using finite element method (FEM) is investigated by applying two different velocity calculation methods viz, cubic spline and least squares (LS). The simulated wave surface elevation has been compared with the experimental measurements. The coherence analysis has been carried out using the wavelet transformation, which gives a better understanding between the numerical and the experimental results with respect to the time–frequency space, compared with the conventional Fourier transformation. It is observed that the application of cubic spline approach leads to a higher phase difference for steeper waves. The present study has shown that the phase difference exists at the higher modes rather than at the primary period. For waves with steepness (wave height/wave length) higher than 0.04, LS approach is found to be effective in capturing the higher‐order frequency components in the event of nonlinearity. In addition, the comparison of numerical simulations with that from PIV measurements for the tests with solitary waves is also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Blaysat  B.  Neggers  J.  Grédiac  M.  Sur  F. 《Experimental Mechanics》2020,60(3):393-407

Users of full-field measurement methods like Digital Image Correlation (DIC) often aim to perform measurements with the best trade-off between spatial resolution, bias and measurement resolution. Whenever two full-field methods are compared, it is essential that these criteria are taken into consideration. Recently a metrological efficiency indicator for full-field measurements has been proposed and discussed. This indicator combines measurement resolution and spatial resolution. It has been shown to be invariant to the subset size in the case of Local DIC. The goal of this article is to discuss a method, which determines both the spatial and the measurement resolutions for a given bias for two different DIC methods, in order to obtain the metrological efficiency indicator for each of these methods. The benefit of this indicator is that it does not depend on setting parameters such as the subset size, which are chosen by the user. As such, it can be considered as intrinsic to each technique, thus enabling fair comparison. Local DIC and triangular finite element based Global DIC will be the subject of this investigation. With this setting, their respective subset and triangular element sizes will be related to the spatial resolution of both methods for a given acceptable bias. By using the metrological efficiency indicator, the performance of the two methods will be compared and discussed to a new level of detail. Generally speaking, the indicator shows that the metrological performance of both methods is similar, confirming their popularity. However, it will be shown that, depending on the choice of what an acceptable bias is, one of the method may be preferred to another. The results show that for the specific DIC versions used in the study, for cases for which a significant bias is acceptable, Local DIC outperforms Global DIC, while the opposite is true in the case for which the bias requirements are more stringent. Finally, the quadratic versions of both DIC versions are shown to significantly outperform their respective linear versions.

  相似文献   

19.
We offer a revised exposition of the three types of heat-propagation theories proposed by Green and Naghdi. Those theories, which make use of the notion of thermal displacement and allow for heat waves, are at variance with the standard Fourier theory; they have attracted considerable interest, and have been applied in a number of disparate physical circumstances, where heat propagation is coupled with elasticity, viscous flows, etc. (Straughan in Heat waves. Applied mathematical sciences, vol. 177. Springer, Berlin, 2011). However, their derivation is not exempt from criticisms, that we here detail, in hopes of opening the way to reconsideration of old applications and proposition of new ones.  相似文献   

20.
Forsström  A.  Bossuyt  S.  Scotti  G.  Hänninen  H. 《Experimental Mechanics》2020,60(1):3-12
Experimental Mechanics - Digital image correlation, commonly referred to as DIC, enables full-field measurements of displacements and strains from a surface of interest. While DIC offers major...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号