首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic toughness in elastic nonlinear viscous solids   总被引:1,自引:0,他引:1  
This work addresses the interrelationship among dissipative mechanisms—material separation in the fracture process zone (FPZ), nonelastic deformation in the surrounding background material and kinetic energy—and how they affect the macroscopic dynamic fracture toughness as well as the limiting crack speed in strain rate sensitive materials. To this end, a micromechanics-based model for void growth in a nonlinear viscous solid is incorporated into a microporous strip of cell elements that forms the FPZ. The latter is surrounded by background material described by conventional constitutive relations. In the first part of the paper, the background material is assumed to be purely elastic. Here, the computed dynamic fracture toughness is a convex function of crack velocity. In the second part, the background material as well as the FPZ are described by similar rate-sensitivity parameters. Voids grow in the strain rate strengthened FPZ as the crack velocity increases. Consequently, the work of separation increases. By contrast, the inelastic dissipation in the background material appears to be a concave function of crack velocity. At the lower crack velocity regime, where dissipation in the background material is dominant, toughness decreases as crack velocity increases. At high crack velocities, inelastic deformation enhanced by the inertial force can cause a sharp increase in toughness. Here, the computed toughness increases rapidly with crack velocity. There exist regimes where the toughness is a non-monotonic function of the crack velocity. Two length scales—the width of the FPZ and the ratio of the shear wave speed to the reference strain rate—can be shown to strongly affect the dynamic fracture toughness. Our computational simulations can predict experimental data for fracture toughness vs. crack velocity reported in several studies for amorphous polymeric materials.  相似文献   

2.
李丹  尚帅旗  陶俊林  王宁 《实验力学》2013,28(4):481-489
利用平台巴西圆盘加载方式和钢质压条加载方式,对两种厚度为25mm和50mm、不同密度的轻质泡沫混凝土(400~1000kg/m3)进行巴西圆盘劈裂试验,研究密度和厚度对泡沫混凝土裂纹宽度、劈裂强度、断裂韧度、断裂能的影响规律。结果表明,在橡胶垫平台巴西圆盘和钢质压条加载方式下,其劈裂断裂特征大致分为四个阶段:线性弹性段、非线性弹性段、起裂阶段、失稳阶段。同样加载率下最大裂纹宽度随着泡沫混凝土密度增加逐渐减小,劈裂拉伸强度、断裂韧度、断裂能呈幂函数形式增加。借鉴Reinhardt非线性软化曲线,对不同密度泡沫混凝土的应力软化关系进行曲线拟合,建立基于拉伸强度、断裂韧度等控制参数的应力-裂纹宽度关系三段式模型。基于试验结果,对理想多孔材料细观力学预测模型进行修正,获得泡沫混凝土孔隙率与拉伸强度的半经验公式。  相似文献   

3.
For crack growth along an interface between two adjacent elastic–plastic materials in a layered solid, the resistance curve behaviour is analysed by approximating the behaviour in terms of a bi-material interface under small scale yielding conditions. Thus, it is assumed that the layers are thick enough so that the extent of the plastic regions around the crack tip are much smaller than the thickness of the nearest layers. The focus is on the effect of initial residual stresses in the layered material, or on T-stress components induced during loading. The fracture process is represented in terms of a cohesive zone model. It is found that the value of the T-stress component in the softer material adjacent to the interface crack plays a dominant role, such that a negative value of this T-stress gives a significant increase of the interface fracture toughness, while a positive value gives a reduction of the fracture toughness.  相似文献   

4.
In this paper, a multiscale model that combines both macroscopic and microscopic analyses is presented for describing the ductile fracture process of crystalline materials. In the macroscopic fracture analysis, the recently developed strain gradient plasticity theory is used to describe the fracture toughness, the shielding effects of plastic deformation on the crack growth, and the crack tip field through the use of an elastic core model. The crack tip field resulting from the macroscopic analysis using the strain gradient plasticity theory displayes the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic fracture analysis, the discrete dislocation theory is used to describe the shielding effects of discrete dislocations on the crack growth. The result of the macroscopic analysis near the crack tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis. The equilibrium locations of the discrete dislocations around the crack and the shielding effects of the discrete dislocations on the crack growth at the microscale are calculated. The macroscopic fracture analysis and the microscopic fracture analysis are connected based on the elastic core model. Through a comparison of the shielding effects from plastic deformation and the discrete dislocations, the elastic core size is determined.  相似文献   

5.
应力波载荷作用下线弹性断裂过程的动态分析方法研究   总被引:5,自引:0,他引:5  
利用Hopkinson单压杆实验装置 ,对材料的线弹性动态断裂特性进行了研究 ,建立了应力波载荷作用下动态裂纹起裂及扩展过程的动态分析方法 ,采用该方法可同时测得材料的动态裂纹起裂时间、断裂韧性和裂纹扩展速度。40Cr钢三点弯曲试样的实验结果表明 :该钢的动态裂纹扩展过程主要是减速过程 ,在2 2 5TPam /s的加载速率下 ,起裂时间为 2 8 0 0 s,最大裂纹扩展速度为 478 91m/s ,动态断裂韧性为6 3 12MPam。  相似文献   

6.
The maximum energy release rate criterion, i.e., G max criterion, is commonly used for crack propagation analysis. This fracture criterion is based on the elastic macroscopic strength of materials. In the present investigation, however, the G max criterion has been modified in order to accommodate the consideration of plastic strain energy. This modified criterion is extended to study the fatigue crack growth characteristics of mixed-mode cracks. To predict crack propagation due to fatigue loads, a new elasto–plastic energy model is presented. This new model includes the effects of material properties such as strain hardening exponent n, yield strength σ y , and fracture toughness and stress intensity factor ranges. The results obtained are compared with those obtained using the commonly employed crack growth law and the experimental data.  相似文献   

7.
Crack propagation in metallic materials produces plastic dissipation when material in front for the crack tip enters the active plastic zone traveling with the tip, and later ends up being part of the residual plastic strain wake. Thus, the macroscopic work required to advance the crack is typically much larger than the work needed in the near tip fracture process. For rate sensitive materials, the amount of plastic dissipation typically depends on the rate at which the material is deformed. A dependency on the crack velocity should therefore be expected. The objective of this paper is to study the macroscopic toughness of crack advance along an interface joining two dissimilar rate dependent materials, characterized by an elastic-viscoplastic material model that approaches the response of a J2-flow material in the rate independent limit. The emphasis here is on the rate sensitivity of the macroscopic fracture toughness under mixed Mode I/II loading. Moreover, special cases of joined similar rate dependent materials, as well as dissimilar materials where one substrate remains either elastic or approaches the rate independent limit is also included. The numerical analysis is carried out using the SSV model [Suo, Z., Shih, C., Varias, A., 1993. A theory for cleavage cracking in the presence of plastic flow. Acta Metall. Mater. 41, 1551–1557] embedded in a steady state finite element formulation, here assuming plane strain conditions and small-scale yielding. Results are presented for a wide range of material parameters, including noteworthy observations of a characteristic crack velocity at which the macroscopic toughness becomes independent of the material rate sensitivity. The potential of this phenomenon is elaborated on from a modeling point of view.  相似文献   

8.
共晶基陶瓷复合材料的断裂韧性   总被引:2,自引:0,他引:2  
应用细观力学方法研究了由具有随机尺寸和方位的棒体共晶体构成的共晶基陶瓷复合材料的断裂韧性.首先根据棒状共晶体的细观结构特性,考虑共晶体边界处的微观滑移确定共晶陶瓷复合材料的开裂应力,当外载荷达到开裂应力时,裂纹开始扩展.然后分析裂纹表面处的棒状共晶体桥联力使裂纹产生闭合效应,减小裂纹尖端的应力集中,建立棒状共晶体桥联增韧机制;再依据棒状共晶体拔出过程中摩擦力做功,建立棒状共晶体拔出增韧机制.最后在棒状共晶体的桥联与拔出增韧机制的基础上,得到了共晶基陶瓷复合材料断裂韧性的理论表达式.结果表明共晶基陶瓷复合材料的断裂韧性与棒状共晶体的长径比密切相关.  相似文献   

9.
刘明  侯冬杨  高诚辉 《力学学报》2021,53(2):413-423
压痕法是测量材料断裂韧性 ($K_{\rm IC})$ 的常用方法之一, 如何根据不同的材料、不同的压头选择适合的公式, 是当前面临的一大问题. 因此,在不同载荷下对单晶硅 (111) 和碳化硅 (4H-SiC, 0001面) 这两种半导体材料进行了维氏微米硬度和玻氏纳米压痕实验, 对实验产生的裂纹长度$c$进行了统计分析, 并采用13个压痕公式计算材料的$K_{\rm IC}$, 开展了微米划痕实验, 验证压痕法评估半导体材料$K_{\rm IC}$的适用性. 研究结果表明: 为了消除维氏压痕实验产生的$c$的固有离散性, 需要多次测量取平均值; 裂纹长度与压痕尺寸的比值随压痕载荷的增大而增大; 材料的裂纹类型与载荷相关且低载荷下表现为巴氏裂纹, 高载荷下表现为中位裂纹; 与微米划痕实验得到的单晶硅和碳化硅材料的$K_{\rm IC}$平均值 (分别为0.96 MPa,$\cdot$,$\sqrt{\rm m}$和2.89 MPa,$\cdot$,$\sqrt{\rm m}$) 相比, 在同一压头下无法从13个公式中获得同时适用于单晶硅和碳化硅材料的压痕公式,但在同一材料下可以获得同时适用于维氏和玻氏压头的$K_{\rm IC}$计算公式; 基于中位裂纹系统发展而来的压痕公式更适合用于评估半导体材料的$K_{\rm IC}$, 且维氏压头下的$K_{\rm IC}$与玻氏压头下$K_{\rm IC}$的关系不是理论上的1.073倍, 应为1.13$\pm 压痕法是测量材料断裂韧性(K_(IC))的常用方法之一,如何根据不同的材料、不同的压头选择适合的公式,是当前面临的一大问题.因此,在不同载荷下对单晶硅(111)和碳化硅(4H-Si C, 0001面)这两种半导体材料进行了维氏微米硬度和玻氏纳米压痕实验,对实验产生的裂纹长度c进行了统计分析,并采用13个压痕公式计算材料的K_(IC),开展了微米划痕实验,验证压痕法评估半导体材料K_(IC)的适用性.研究结果表明:为了消除维氏压痕实验产生的c的固有离散性,需要多次测量取平均值;裂纹长度与压痕尺寸的比值随压痕载荷的增大而增大;材料的裂纹类型与载荷相关且低载荷下表现为巴氏裂纹,高载荷下表现为中位裂纹;与微米划痕实验得到的单晶硅和碳化硅材料的K_(IC)平均值(分别为0.96 MPa·m~(1/2)和2.89 MPa·m~(1/2))相比,在同一压头下无法从13个公式中获得同时适用于单晶硅和碳化硅材料的压痕公式,但在同一材料下可以获得同时适用于维氏和玻氏压头的K_(IC)计算公式;基于中位裂纹系统发展而来的压痕公式更适合用于评估半导体材料的K_(IC),且维氏压头下的K_(IC)与玻氏压头下K_(IC)的关系不是理论上的1.073倍,应为1.13±0.01.  相似文献   

10.
增韧环氧树脂的动态裂纹扩展研究   总被引:1,自引:0,他引:1  
本文主要进行了环氧及增韧环氧树脂的断裂韧性及裂纹快速扩展的试验研究。试验过程中采用了GLC-1型高速裂纹扩展测试仪来测试裂纹的扩展速度,得到在裂纹扩展过程中裂纹扩展速度曲线。本文结合不同的计算公式及有限元分析方法,讨论了各个确定断裂韧性公式的准确程度,发现传统的静态断裂韧性的分析方法所得到的结果偏大,有一定的危险性,建议使用试验与数值计算相结合的方法;同时还发现增韧不仅可以提高材料的静态和动态断裂性能,而且在裂纹扩展过程中可以起到减缓裂纹扩展的作用  相似文献   

11.
在复合材料层合板静压痕接触问题中,由于层合板接触区域的纤维走向发生了变化,导致沿厚度方向的弹性模量产生变化并随着凹坑深度的增加而增大。本文建立压头压入后的力学分析模型,得到了与凹坑深度相关的沿厚度方向的等效弹性模量;将等效弹性模量代入目前被广泛接受的修正Hertz接触理论,建立了新的接触力与凹坑深度的关系式。通过与静压痕试验中接触力和凹坑深度的关系进行比较,结果表明该接触关系式能较好地描述接触力和凹坑深度的关系。与文献修正理论相比,在压痕较小时,本文的修正结果较好。  相似文献   

12.
In devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. In this paper we analyze a channel crack advancing in an elastic film, while an underlayer creeps. The film is subject to a tensile stress. As the underlayer creeps, the stress field in the film relaxes in the crack wake, and intensifies around the crack tip. In a blanket film, the crack can attain a steady velocity, set by two rate processes: subcritical decohesion at the crack tip, and creep in the underlayer. In a thin-film microbridge over a viscous stripe, the crack cannot grow when the bridge is short, and can grow at a steady velocity when the bridge is long. We use a two-dimensional shear lag model to approximate the three-dimensional fracture process, and an extended finite element method to simulate the moving crack with an invariant, relatively coarse mesh. On the basis of the theoretical findings, we propose new experiments to measure fracture toughness and creep laws in small structures. As a byproduct, an analytical formula is found for the growth rate per temperature cycle of a channel crack in a brittle film, induced by ratcheting plastic deformation in a metal underlayer.  相似文献   

13.
基于一维试验原理提出了用带有周边切口的短金属圆柱试件进行平面应变型弹塑性动态断裂韧度的测试方法;对该复杂的动力学系统进行了轴对称的弹塑性有限元分析,并计算了动态围道积分;根据对试件功能转换关系的分析和Rice公式的物理意义,提出了用试件两端平均载荷-两端相对位移曲线(-Δ)推广Rice公式计算试件的远场J积分,由此得到的-Δ曲线基本上消除了与裂纹运动无关的质心运动动能的影响.论证了J积分作为裂端的表征参量,且当切口深度比大于70%时,Rice公式有较高的计算精度.为平面应变型弹塑性动态断裂韧度的表征与测试提供了依据.  相似文献   

14.
带微裂纹物体的有效断裂韧性   总被引:4,自引:0,他引:4  
按照等效介质的思想,引进有效表面能密度的概念,建立了带微裂纹物体有效断裂韧性的公式.具体计算了微裂纹群分别平行和垂直于宏观裂纹两种情况的减韧比.表明微裂纹群在产生应力屏蔽(或反屏蔽)效应的同时,也降低了材料的有效断裂韧性,减小了对宏观裂纹的扩展阻力.  相似文献   

15.
The peak cutting force (PCF) estimation plays an important role in the design of cutting tools for mining excavators. In most of the existing theoretical models for cutting force prediction, the PCF is often modeled as the force on the cutting tool at the moment when the rock fragment is formed. However, according to the theory of fracture mechanics, the PCF is supposed to occur during the crack initiation phase. Consequently, this paper attempts to add to the existing literature by proposing a fracture mechanics-based theoretical model for PCF prediction. The proposed PCF prediction model distinguishes itself from existing models by determining the PCF during initiation of the rock crack. The PCF is determined using the energy and stress criteria of Griffith’s fracture mechanics theory. In this new model, the PCF is positively related to the fracture toughness of the rock and the cutting depth. The experimental results demonstrated the validity of the proposed model. The proposed model performs well in predicting the PCF in terms of reliability and accuracy. Besides, the PCF prediction capability of the proposed model was compared with those of the other rock cutting models existing in the literature.  相似文献   

16.
Three-dimensional (3D) elastic–plastic finite element analyses (FEA) are performed to study constraint effect on the crack-front stress fields for single-edge notched bend (SENB) specimens. Both rectangular and square cross-section of the specimens with a deep crack of a/W=0.5 are considered to investigate the effect of specimen size. A square-cross-section specimen with a shallow crack of a/W=0.15 is also considered to examine the effect of crack depth. Stresses from FEA at the crack front on different planes of the specimen are compared with those determined by the JA2 three-term solution. Results show that in-plane stress fields can be characterized by the three-term solution throughout the thickness even in the region near the free surface. Cleavage fracture toughness data is compared to predict the effects of specimen size and crack depth on fracture behavior. It is found that the distributions of crack opening stress are nearly the same for the SENB specimens at the critical J which is consistent with the RKR model. Furthermore our results indicate that there is a distinct relationship between the crack-front constraint and the cleavage fracture toughness. By introducing the failure curves, the minimum fracture toughness and scatter band can be well captured using the JA2 approach.  相似文献   

17.
A Semi-Circular Bend Technique for Determining Dynamic Fracture Toughness   总被引:6,自引:0,他引:6  
We propose and validate a fracture testing method using a notched core-based semi-circular bend (SCB) specimen loaded dynamically with a modified split Hopkinson pressure bar (SHPB) apparatus. An isotropic fine-grained granitic rock, Laurentian granite (LG) is tested to validate this dynamic SCB method. Strain gauges are mounted near the crack tip of the specimen to detect the fracture onset and a laser gap gauge (LGG) is employed to monitor the crack surface opening distance. We demonstrate that with dynamic force balance achieved by pulse shaping, the peak of the far-field load synchronizes with the specimen fracture time. Furthermore, the evolution of dynamic stress intensity factor (SIF) obtained from the dynamic finite element analysis agrees with that from quasi-static analysis. These results prove that with dynamic force balance in SHPB, the inertial effect is minimized even for samples with complex geometries like notched SCB disc. The dynamic force balance thus enables the regression of dynamic fracture toughness using quasi-static analysis. This dynamic SCB method provides an easy and cost-effective way to measure dynamic fracture toughness of rocks and other brittle materials.  相似文献   

18.
詹思远  郑百林  张锴 《力学季刊》2020,41(1):136-146
柱形结构电极是近年来使用最为广泛的锂电池电极结构之一.本文以硅材料细长柱形电极为例,研究了充电电流大小、电极长径比、初始裂纹长度以及断裂韧性对于电极的屈曲现象和裂纹扩展现象发生时间的影响.计算结果表明,屈曲与裂纹扩展现象出现的先后顺序与充电电流大小无关;具有小的长径比,大的初始裂纹长度以及较小断裂韧性的电极,裂纹扩展比屈曲现象更早发生.对于硅材料,不同长径比的电极具有不同临界断裂韧性值,当材料的断裂韧性小于该临界值,在锂化过程中裂纹扩展会先于屈曲现象发生;该临界断裂韧性值随初始裂纹长度的增加而增加.本文的结论对于电极的结构设计以及材料选取具有一定指导意义.  相似文献   

19.
20.
Many biological materials, such as wood and bone, possess helicoid microstructures at microscale, which can serve as reinforcing elements to transfer stress between crack surfaces and improve the fracture toughness of their composites. Failure processes, such as fiber/matrix interface debonding and sliding associated with pull-out of helical fibers, are responsible mainly for the high energy dissipation needed for the fracture toughness enhancement. Here we present systemic analyses of the pull-out behavior of a helical fiber from an elastic matrix via the finite element method(FEM) simulation, with implications regarding the underlying toughening mechanism of helicoid microstructures. We find that, through their uniform curvature and torsion, helical fibers can provide high pull-out force and large interface areas, resulting in high energy dissipation that accounts, to a large extent, for the high toughness of biological materials. The helicity of fiber shape in terms of the helical angle has significant effects on the force-displacement relationships as well as the corresponding energy dissipation during fiber pull-out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号