首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
(+)-Carpamic acid [(2′R,5′S,6′S)-8-(5′-hydroxy-6′-methylpiperidin-2′-yl)octanoic acid, 1] was synthesized from (S)-alanine, employing intramolecular and reductive amination of acyclic amino ketone 8 as the key step to generate the piperidine ring.  相似文献   

2.
2,2′-Bis[(4,7-dimethyl-inden-1-yl)methyl]-1,1′-binaphthyl and [2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides have been synthesized from 2,2′-bis(bromomethyl)-1,1′-binaphthylene. 2,2′-Bis(bromomethyl)-1,1′-binaphthylene was alkylated with the lithium salt of 4,7-dimethylindene to yield 2,2′-bis[1-(4,7-dimethyl-indenylmethyl)]-1,1′-binaphthylene (S)-(−)-9. The lithium salt of 9 was metalated with either titanium trichloride followed by oxidation or zirconium tetrachloride to give titanocene dichloride (S)-(+)-10 and zirconocene dichloride 11. The known complexes ansa-[2,2′-bis[(1-indenyl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides were formed and hydrogenated to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides 12 and 14 or to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl]titanium dichloride 13 whose solid state structure was determined by X-ray crystallography. Complex 13 adopts a C1-symmetrical conformation in the solid state, but is conformationally mobile in solution, exhibiting C2-symmetry in its room temperature NMR spectra.  相似文献   

3.
Acid-catalyzed condensation of (+)-mollisacacidin-[(2R, 3S, 4R)-2, 3-trans-3, 4-trans-flavan-3,3′,4,4′,7-pentaol] with an excess of (−)-robinetinidol[(2R,3S)-2,3-trans-flavan-3,3′,4′,5′,7-pentaol] afforded a novel series of bi-, tri-, and tetraflavanoid profisetinidins. They are accompanied by (−)-fisetinidol-(4,2′)-(−)-robinetinidol which results from the pyrogallol B-ring of (−)-robinetinidol serving as nucleophile competing with its resorcinol A-ring in coupling with a C-4 carbocationic intermediate. Similar condensation with (+)-epifisetinidol[(2S,3S)-2,3-cis-flavan-3,3′,4′,7-tetraol] led to the exclusive formation of [4,6]-interflavanyl bonds, these units being ‘linearly’ arranged in the tetraflavanoid analogue in contrast to the ‘branched’ nature of the (−)-robinetinidol homologue.  相似文献   

4.
Three spiro[pyrrolidine-2,3′-oxindoles], 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-phenyl-spiro[3H-indole-3,3′-[3H]-pyrrolizine]-2′-carboxylic acid methyl ester (1), 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-phenyl-spiro[3H-indole-3, 3′-[3H]-pyrrolizine] (2) and 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-(4″-chlorophenyl)-spiro[3H-indole-3,3′-[3H]-pyrrolizine] (3) have been synthesized and their 1H, 13C and 15N spectra assigned. The chemical shift assignments are based on Pulsed Field Gradient (PFG) Double Quantum Filter (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H,X (X = 13C and 15N) Heteronuclear Multiple Bond Correlation (HMBC) experiments. The single crystal X-ray structures of 1–3 have been determined. Compounds 1 and 2 crystallized in monoclinic space group C2/c and compound 3 in monoclinic space group P21/c, respectively. Also the ESI-TOF MS data of 1–3 are given.  相似文献   

5.
A. Bhati 《Tetrahedron》1962,18(12):1519-1526
Syntheses of 5-chloro-8-methoxy-1-tetralone (XIV), 6,8-dimethoxy-1-tetralone (XIX), 2-carbethoxy-6,8-dimethoxy-1-tetralone (VI), 3-(2′-chloro-5′-methoxybenzyl)-6,8-dimethoxy-1-tetralone (III) and 2-carbethoxy-3-(2′-chloro-5′-methoxybenzyl)-6,8-dimethoxy-1-tetralone (IV) are reported. The mode of cyclization with polyphosphoric acid of I and related compounds is described.  相似文献   

6.
The novel compounds [(η6-p-cymene)RuCl(μ-RR-DTO N,N′Ru S,S′-Pt)Pt(RR-DTO)(P-N)Cl] (P-N = 2-diphenylphosphino-pyridine, RR-DTO = N,N′-dialkyl-dithioxamidato, R = benzyl, 1; R = (R)-(−)-2-hydroxypropyl (coming from (R)-(−)-2-hydroxypropyl-amine), 2;) exhibit a Pt---Ru chiral axis which is a new example of stereoisomerism in inorganic chemistry. The crystal structure of 2 is also reported.  相似文献   

7.
By use of the three-layer diffusion method, reactions of flexible bipyridyl ligands (4,4′-bpp or 3,3′-bpp) with M(II) salts (M = Zn, Cd) and multi-carboxylate ligands resulted in the formation of four interesting d10 metal–organic coordination polymers: [Zn(μ-4,4′-bpp)Br2]n (1), [Zn(μ-4,4′-bpp)(1,2-bdc)]n · nH2O (2), [Zn(μ-3,3′-bpp)(1,3-bdc)]n · nCH3OH · 2nH2O (3) and [Cd(μ-3,3′-bpp)(C4H2O4)]n · 3nH2O (4) (4,4′-bpp = 2,2′-bis(4-pyridylmethyleneoxy)-1,1′-biphenylene; 3,3′-bpp = 2,2 ′-bis(3-pyridylmethyleneoxy)-1,1′-biphenylene; bdc=benzenedicarboxylate, C4H4O4 = fumaric acid). Complex 1 has a 2D sheet structure consisting of two unusual zigzag Zn(II) chains which are nearly perpendicular to each other. Complex 2 is comprised of two-leg ladders, in which [Zn(4,4′-bpp)] chains serve as the side rails and 1,2-bdc ligands serve as the cross rungs. In complex 3, every two 1,3-bdc ligands connect the neighbouring Zn(II)-3,3′-bpp dimetallic rings in η1 coordination modes into an interesting chain structure. Complex 4 consists of an anionic macrocycle-containing cadmium dicarboxylate sheets that are separated by 3,3′-bpp. These d10 metal complexes exhibit high thermal stabilities and strong luminescence efficiencies.  相似文献   

8.
The title condensation occurred readily at reflux (100°C) with the methyl hemiacetal of trifluoroacetaldehyde and provided 37.3% of 4(5)-(1′-hydroxy-2′,2′,2′-trifluoroethyl)imidazole as the major product, together with 8.8% of 2-(1′-hydroxy-2′,2′,2′-trifluoroethyl)imidazole, 7.2% of 2,4(5)-bis-(1′-hydroxy-2′,2′,2′-trifluoroethyl)imidazole and 0.4% of the 4,5-bis-product. (Trifluoroacetyl)imidazoles were prepared by oxidation of these condensation products. Nitration and bromination of the condensation products gave the corresponding nitro- and bromoimidazoles, respectively.  相似文献   

9.
Three pyochelin analogues and their methyl esters all containing a thiazole ring have been synthesised from the same Weinreb amide key intermediate. One of these analogues called HPTT-COOH, a molecule released in the course of pyochelin and yersiniabactin biosynthesis, was efficiently synthesised using a new base induced conversion of the key compound 2′-(2-hydroxyphenyl)-2′-thiazoline-4′-(N-methoxy,N-methyl) carboxamide into 2′-(2-hydroxyphenyl)-2′-thiazole-4′-(N-methoxy,N-methyl) carboxamide.  相似文献   

10.
K. Mori 《Tetrahedron》1975,31(24):3011-3012
(S)-(+)-Sulcatol (1) and its antipode (1′) were synthesized from (R)-(−)-glutamic acid (2), and its antipode (2′), respectively. This established the absolute configurations of both enantiomers of sulcatol and afforded key materials to study the relationship between pheromone activity and chirality.  相似文献   

11.
Two stereoisomeric lactones of 2(2′-hydroxy-4′-methylcyclohex-1′-yl)propionic acid, analogues of the iridolactones, have been synthesized from -citronellal.  相似文献   

12.
High-performance liquid chromatography–electrospray ionization–mass spectrometry has been applied to analyze the chemical constituents of Danggui (the rhizome of Angelica sinensis) and to study chemical changes of Z-ligustilide. Twelve phthalides were unambiguously identified as senkyunolide I (3), senkyunolide H (4), sedanenolide (8), butylphthalide (9), E-ligustilide (13), Z-ligustilide (14), Z-butylidenephthalide (15), Z,Z′-6.8′,7.3′-diligustilide (16), angelicide (17), levistolide A (18), Z-ligustilide dimer E-232 (19) and Z,Z′-3.3′,8.8′-diligustilide (20) in Danggui extract. The existence of 12 other phthalides (2, 5–7, 11, 12, 22–27), ferulic acid (1) and coniferyl ferulate (10) in Danggui extract has also been demonstrated. Phthalides 3, 4, 16–18 and 20 were determined to be the products from chemical change of Z-ligustilide. This is the first report of the existence of 16 compounds (2–8, 10–12, 20, 22–25 and 27) in Danggui extract.  相似文献   

13.
The mechanism by which the ribosome catalyze peptide bond formation remains controversial. Here we describe the synthesis of dinucleotides that can be used in kinetic isotope effect experiments to assess the transition state of ribosome catalyzed peptide bond formation. These substrates are the isotopically labeled dinucleotide cytidylyl-(3′-5′)-3′-amino-3′-deoxy-3′-l-phenylalanyl-N6,N6-dimethyladenosine (Cm6ANPhe-NH2) and cytidylyl-(3′-5′)-3′-amino-3′-deoxy-3′-(l-2-hydroxy-3-phenylpropionyl)-N6,N6-dimethyladenosine (Cm6ANPhe-OH). These substrates are active in peptide bond formation and can be used to measure kinetic isotope effects in ribosome catalyzed protein synthesis.  相似文献   

14.
Sungano Mhizha   《Tetrahedron》1997,53(52):17751-17760
A one pot synthesis of 2-2′-diselenobis/ditellurobis(N-alkyl/aryl benzenesulfonamides) 4a-h from N-alkyl/aryl benzenesulfonamides is elaborated. The first cyclization of 2-2′-diselenobis (N-methyl benzenesulfonamide) 4a into 2- methyl-1,3,2-benzothiaselenazole 1,1 dioxide (5a)1a using 3-chloroperoxybenzoic acid is described. Compounds 4a-h and 5a and d act as a new class of biologically active1b compounds.  相似文献   

15.
(1R,2R,3R,7aR)-1,2-Dihydroxy-3-hydroxymethylpyrrolizidine (+)-Hyacinthacine A2 1 has been synthesized by Wittig's methodology using [(2′S,3′R,4′R,5′R)-3′,4′-dibenzyloxy-N-tert-butyloxycarbonyl-5′-tert-butyldiphenylsilyloxymethylpyrrolidin-2′-yl]carbaldehyde 3, prepared from a partially protected DMDP 2, and the appropriated ylide, followed by cyclization by an internal reductive amination process of the resulting unsaturated aldehyde 4 and total deprotection.  相似文献   

16.
A new chiral ferrocenylphosphine ligand, 2,2′-bis[1-N,N-dimethylamino)ethyl]-1,1′-bis(diphenylphosphino)ferrocene (2), which has C2 symmetry and a functional group on the side chain, was prepared by ortho-lithiation and phosphination of 1,1′-bis[1-N,N-dimethylamino)ethyl]ferrocene followed by optical resolution; recrystallization of the diammonium salt with tartaric acid. An X-ray diffraction study of PdCl2[(+)-2] showed that the complex has square-planar geometry with two cis chlorine and two phosphorus atoms and ligand (+)-2 has an (S) configuration on the 1-dimethylaminoethyl side chain and (R) ferrocene planar chirality.  相似文献   

17.
The crystal and molecular structures of 2′-amino-6′-dibutylamino-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (1), 2′-amino-6′-(N-cyclohexyl-N-methylamino)-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (2) and 2′-(2-chlorophenyl)amino-6′-dibutylaminospiro[isobenzofuran-1(3H), 9′[9H]xanthen-3-one (3) have been determined by single-crystal X-ray diffraction analysis. Atom-atom non-bonded potential energy and semiempirical quantum chemical calculations have been performed. The xanthene rings of 1 to 3 are slightly bent and the phthalide rings are planar. The phthalide ring moieties are almost perpendicular (88.9(1)−93.5(5)°) to the xanthene rings. The bond lengths C(6)---O(2) are apparently extended from the normal C(sp3)---O (lactone) length. The temperature factors for one butyl group C(32)---C(35)) of 1 increase gradually toward the terminal carbon. The temperature factors for C(30)---C(33) of 2 indicate large vibrations and these are reflected in short bond lengths. Two butyl groups of 3 are disordered and these C---C bond lengths are short and long alternately. Atomic net charges around spirocarbon C(6) and toward N(1) to C(6) indicate the weak alternative system in the colorless form. As the xanthene ring has a planar geometry, the π electron density migration will easily occur from the auxochromes attached to the phthalide ring to the xanthene ring.  相似文献   

18.
The crystal and molecular structures of 2′-amino-6′-dibutylamino-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (1), 2′-amino-6′-(N-cyclohexyl-N-methylamino)-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (2) and 2′-(2-chlorophenyl)amino-6′-dibutylaminospiro[isobenzofuran-1(3H), 9′[9H]xanthen-3-one (3) have been determined by single-crystal X-ray diffraction analysis. Atom-atom non-bonded potential energy and semiempirical quantum chemical calculations have been performed. The xanthene rings of 1 to 3 are slightly bent and the phthalide rings are planar. The phthalide ring moieties are almost perpendicular (88.9(1)–93.5(5)°) to the xanthene rings. The bond lengths C(6)---O(2) are apparently extended from the normal C(sp3---O (lactone) length. The temperature factors for one butyl group C(32)---C(35)) of 1 increase gradually toward the terminal carbon. The temperature factors for C(30)---C(33) of 2 indicate large vibrations and these are reflected in short bond lengths. Two butyl groups of 3 are disordered and these C---C bond lengths are short and long alternately. Atomic net charges around spirocarbon C(6) and toward N(1) to C(6) indicate the weak alternative system in the colorless form. As the xanthene ring has a planar geometry, the π electron density migration will easily occur from the auxochromes attached to the phthalide ring to the xanthene ring.  相似文献   

19.
The room temperature photophysical properties of several sulphonated and unsulphonated 6-(2′-hydroxy-4′-methoxyphenyl)-s-triazines were investigated in a range of solvents by means of steady state and picosecond fluorescence spectroscopy. Compounds possessing phenyl or p-tolyl groups in the s-triazinyl ring exhibit only a very weak normal Stokes-shifted fluorescence, arising from the initially excited chromophore. Substitution of phenoxy groups into the s-triazinyl ring results in the appearance of an additional longer-wavelength fluorescence which is assigned to the keto tautomer, formed following excited state intramolecular proton transfer (ESIPT). The rate constant for the (ESIPT) process that occurs in sodium 3-(3′,5′-diphenoxy-2′,4′,6′-triazinyl)-4-hydroxy-2-methoxybenzene sulphonate in water is estimated to be greater than 1011 s−1.  相似文献   

20.
A new bibenzyl derivative 1, named 2-(4''-hydroxybenzy1)-3-(3'-hydroxyphenethy1)-5-methoxy-cyclohexa-2,5-diene-1,4- dione, and two known stilbenoids (2, 3) were isolated from the tubers of Pleione bulbocodioides (Franch.) Rolfe. Their structures were elucidated by spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号