首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.  相似文献   

2.
A study of visible laser ablation of silicon, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation, at an intensity of the order of 1010 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, coupled to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species from plasma. Neutrals show typical Boltzmann-like distributions while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Time-of-flight measurements were also performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface. Surface profiles of the craters, created by the laser radiation absorption, permitted to study the ablation threshold and ablation yields of silicon in vacuum. The plasma fractional ionization, temperature and density were evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at the non-equilibrium plasma conditions. The angular distribution of the neutral and ion species is discussed.  相似文献   

3.
In the last years the ion component of a laser-produced plasma has been considered and studied as an object to provide high-density ion sources, which can be applied in many fields such as laser-induced implantation. In this work a KrF laser beam of 108 W/cm2 irradiance was focused onto single-crystalline Fe and single-crystalline Fe with 2% of Si targets and the characteristics of both free expanding laser-produced plasmas were compared. The time-of-flight (TOF) method was applied to determine the ion charge yield at various laser fluences and the ion angular spread. The analyses of TOF spectra showed a synergetic effect of the silicon admixture in target material on the Fe ions production. Besides, this admixture was also responsible of the increasing of the plasma temperature which corresponds in turn to the increasing of the average kinetic energy of the particles as well as of the more collimated ion distribution.  相似文献   

4.
The plasma plume induced during ArF laser ablation of a graphite target is studied. Velocities of the plasma expansion front are determined by the optical time of flight method. Mass center velocities of the emitting atoms and ions are constant and amount to 1.7×104 and 3.8×104 m s−1, respectively. Higher velocities of ions result probably from their acceleration in electrostatic field created by electron emission prior to ion emission. The emission spectroscopy of the plasma plume is used to determine the electron densities and temperatures at various distances from the target. The electron density is determined from the Stark broadening of the Ca II and Ca I lines. It reaches a maximum of ∼9.5×1023 m−3 30 ns from the beginning of the laser pulse at the distance of 1.2 mm from the target and next decreases to ∼1.2×1022 m−3 at the distance of 7.6 mm from the target. The electron temperature is determined from the ratio of intensities of ionic and atomic lines. Close to the target the electron temperature of ∼30 kK is found but it decreases quickly to 11.5 kK 4 mm from the target.  相似文献   

5.
Stark broadening measurements and calculations of the Paschen γ spectral line of hydrogen ( λ = 1.094[: MU :] m) are reported. Investigations have been performed at plasma electron densities between 1.4×10 15 cm -3 and 3.7×10 15 cm -3 . As the light source a wall-stabilized arc operated in a helium-hydrogen gas mixture at atmospheric pressure has been applied. The radiation of the plasma emitted from nearly homogeneous plasma layers in end-on direction, was measured with the use of a grating spectrometer equipped with a charge coupled device (CCD) detector. The radiance calibration was carried out against light outputs originating from a tungsten strip radiation standard. The measured FWHM are compared with results of our calculations based on computer simulation techniques (full computer simulation method -- FCSM). Our broadening data are also compared with results of other theoretical approaches (MM-method, quasi-static approximation) and with experimental data obtained at electron densities about one order of magnitude larger than ours. Received 21 January 2003 Published online 24 April 2003 RID="a" ID="a"e-mail: wujec@uni.opole.pl  相似文献   

6.
This paper considers the electrical and optical characterization of glow discharge pulsed plasma in N2/H2 gas mixtures at a pressures range between 0.5 and 4.0 Torr and discharge current between 0.2 and 0.6 A. Electron temperature and ion density measurements were performed employing a double Langmuir probe. They were found to increase rapidly as the H2 percentage in the mixture was increased up to 20%. This increase slows down as the H2 percentage in the gas mixture was increased above 20% at the same pressure. Emission spectroscopy was employed to observe emission from the pulsed plasma of a steady-state electric discharge. The discharge mainly emits within the range 280–500 nm. The emission consists of N2 (C-X) 316, 336, 358 nm narrow peaks and a broad band with a maximum at λmax = 427 nm. Also lines of N2, N2 + and NH excited states were observed. All lines and bands have their maximum intensity at the discharge current of 0.417 A. The intensities of the main bands and spectral lines are determined as functions of the total pressure and discharge current. Agreement with other theoretical and experimental groups was established.  相似文献   

7.
Simultaneous measurements of absolute concentrations of H2O and OH radicals in an atmospheric AC discharge using continuous wave cavity ringdown spectroscopy (cw-CRDS) are reported. Formation of OH radicals and plasma temperatures are characterized by optical emission spectroscopy. The concentration of OH radical at the edge of the discharge plume at 380 K is measured by the cw-CRDS technique to be 1.1 ×1015 molecule cm-3. Ringdown measurements of the H2O (120-000) band and the OH first overtone around 1515 nm enable us to determine an OH generation yield, , to be 4.8 ×10-3, where NOH and are the number densities of OH and H2O, respectively. The minimum detectable absorption coefficient of the cw-CRDS system is 8.9 ×10-9  cm-1, which corresponds to a 1σ detection limit of OH number density of 1.2 ×1013 molecule cm-3 in the discharge. This experimental approach is demonstrated for the first time ever in an AC discharge, and can be applied in general to a variety of atmospheric plasmas to help study OH formation mechanisms and OH-related plasma applications.  相似文献   

8.
Electron densities in an atmospheric helium arc plasma have been measured with the Stark broadening parameters of helium spectral lines. The spatially distributed radiation intensities are converted to plasma emission coefficients at every wavelength by means of Abel inversion. From the inverted profiles of He I lines of 4713 ?, 5016 ?, and 6678 ? electron density has been calculated, which ranges from 0.5 ×1016 to 4 ×1016 cm-3 for a helium arc with current 200 A. Stark widths of He I lines of 3889 ? and 7065 ? are determined based on the measurements and compared with existing data.  相似文献   

9.
The nonequilibrium plasma generated by nanosecond laser pulse is characterized using a SiC detector connected in time-of-flight configuration to measure the radiations emitted from the plasma. Different metallic targets were irradiated by the pulsed laser at an intensity of 1010 W/cm2 and 200 mJ pulse energy. The SiC allows detecting ultraviolet radiations and soft X-rays, electrons, and ions. The obtained plasma has a temperature of the order of tens to hundreds eV depending on the atomic number of the irradiated target and ion accelerations of the order of 100 eV per charge state.  相似文献   

10.
X. Gao  the EAST team 《Physics letters. A》2008,372(13):2286-2290
The first plasma was obtained in the EAST on September 26th, 2006. Single-null (SN) and double-null (DN) diverted plasmas were achieved successfully in the EAST tokamak on January 22nd, 2007. The employed plasma diagnostics for first plasma study of EAST are as follows: a vertical one-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer for measuring the line average density, a 10-channel soft X-ray array for intensity measurement, a 16-channel heterodyne Electron Cyclotron Emission (ECE) for measuring the electron temperature profile, a 8-channel XUV bolometer array to measure plasma radiation losses, a 3-channel hard X-ray array for intensity measurement, an electromagnetic measurement system, a 35-channel Hα radiation array, 20 probes for divertor plasma, a one-channel visible bremsstrahlung emission, an impurity optical spectrum measurement system and two optical spectroscopic multi-channel analyzers (OMA). The first experimental results of diagnostic systems are summarized in this Letter.  相似文献   

11.
In this paper we analyze the variations in line intensities ratios due to a non-equilibrium situation and to optical depth effects. A four level model is proposed and the two particular situations for the possible transitions are considered. Electron density and temperature as well as the source thickness are used as independent parameters to find out in which way and extent they modify the ratios of levels populations compared with the ideal case of an equilibrium state and optically thin source. Accordingly with the ion of interest, electron temperatures ranging from I/20 to I/7 eV (I being the ionization energy), whereas electron densities in the interval from 1014 to 1020 cm-3 will be considered. These ranges are of special interest for diverse applications such as LIBS and measurement of transition probabilities. Some results are presented for real ions and a new expression for the escape factor is also proposed for general plasma conditions. Received 12 June 2001 and Received in final form 24 October 2001  相似文献   

12.
The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2 (C^3 Ⅱu) molecule is calculated according to its rotational emission band near 380.5 nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.  相似文献   

13.
The r.f. discharge of sputtering silicon target using argon-oxygen-nitrogen plasma was investigated by optical emission spectroscopy. Electronic temperature (Te) and emission line intensity were measured for different plasma parameters: pressure (from 0.3 to 0.7 Pa), power density (0.6-5.7 W cm−2) and gas composition. At high oxygen concentration in the plasma, both Te and the target self-bias voltage (Vb) steeply decrease. Such behaviour traduces the target poisoning phenomenon. In order to control the deposition process, emission line intensity of different species present in the plasma were compared to the ArI (λ = 696.54 nm) line intensity and then correlated to the film composition analysed by Rutherford Backscattering Spectroscopy.  相似文献   

14.
High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015?W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1?MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.  相似文献   

15.
Amorphous carbon thin films were deposited by laser ablation of a graphite target, using the fundamental line of a 5 ns Nd:YAG laser. Deposition was carried out as a function of the plasma parameters (mean kinetic ion energy and plasma density), determined by means of a planar probe. In the selected working regimes the optical emission from the plasma is mainly due to atomic species, namely C+ (426.5 nm); however, there is also emission from other atomic species and molecular carbon. The hardness and resistivity could be varied in the range between 10 and 25 GPa, and 108 and 1011 Ω cm, respectively. The maximum values were obtained at a 200 eV ion energy and 6×1013 cm−3 plasma density, where the maximum quantity of C–C sp3 bonds was formed, as confirmed by Raman spectroscopy.  相似文献   

16.
Hydrogenated targets have been irradiated in vacuum with the pulsed Nd:YAg laser at intensities of the order of 1010 W/cm2. The laser-generated plasma, produced by the interaction with the solid, emits protons and other ions along the normal to the target surface. Ion collectors and ion energy analyzer were used to measure the current, the angular emission and the energy distributions of the emitted protons. Time-of-flight measurements, Coulomb–Boltzmann-distributions and the fits of experimental data were also used in order to evaluate the equivalent ion plasma temperature and the ion acceleration developed in the non-equilibrium-pulsed plasma.  相似文献   

17.
Experimental studies of the electron energy distribution function “EEDF” under well defined conditions in flowing afterglow plasma, using a Langmuir probe are reported. The EEDF is measured in He2 + and Ar+ dominated plasmas and in XeH+ and XeD+ dominated recombining plasmas. He is used as a buffer gas at medium pressures in all experiments (1600 Pa, 250 K). The deviation of the measured EEDF from Maxwellian distribution is shown to depend on plasma composition and on the processes governing the plasma decay. The influence of energetic electrons produced during the plasma decay on the body and tail of the EEDF is observed. The mechanism of energy balance in afterglow plasma is discussed.  相似文献   

18.
A Nd:YAG laser operating in second harmonic (532 nm), 3 ns pulse duration, 150 mJ pulse energy, and 10 Hz repetition rate, is employed to irradiate Al2O3 target placed in high vacuum. The produced plasma is investigated by an ion collector used in time-of-flight configuration and by a mass quadrupole spectrometer, in order to determine the equivalent plasma temperature and the atomic and molecular composition. Pulsed laser deposition technique has been used to produce thin films on different substrates placed close to the target. Different surface analyses, such as energy dispersive X-ray fluorescence (EDXRF), X-ray photoelectron spectroscopy (XPS) and surface profilometry are employed to characterize the produced films. Measurements of ablation yield, plasma equivalent temperature, acceleration voltage and characterization of grown thin films are presented and discussed.  相似文献   

19.
Nine different neon-like ions with atomic numbers ranging from 28 to 42 have exhibited gain in various 3p—3s transitions. The temperature of the lasing plasma is critical in determining the state of ionization and the relative importance of collisional excitation and recombination pumping. In this paper we demonstrate a potentially useful new temperature diagnostic for these plasmas that works in the density range of interest for X-ray lasing: the absolute intensity of 3p—3s sodium-like lines. Due to their large collisional couplings and high optical depths, their brightness temperature approaches the actual kinetic temperature of the plasma in temperature and density regimes of importance for achieving optimal X-ray laser performance.  相似文献   

20.
Fast electron beams into a hollow anode of a small plasma focus machine (2 kJ, 4 μF) were measured. The diagnostic method designed for this purpose is founded in a small Rogowski coil introduced into a cavity performed in the anode. By means of this, electron beam pulses of about 10 ns width generated in the plasma focus are detected. Simultaneously, hard X-ray signals obtained from a scintillator-photomultiplier system are registered. The electron beam energy was measured through the time-of-flight of the electrons between probe and anode top. The beams are found to be relativistic and its energy is into the range of hard X-rays energy. An analysis of signal intensities and relative delays for three hundred shots are here presented. Received 28 February 2002 / Received in final form 7 May 2002 Published online 24 September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号