首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We have been studying the problem of heterogeneity of OH groups in zeolites HY for a long time. The heterogeneity was suggested by the shift of the IR band of OH groups restoring upon ammonia desorption and also by the fact that the band of OH groups forming hydrogen bonds was relatively broad (broader than for homogeneous acidic OH). In the present study we present another important argument for heterogeneity: the splitting of the IR band of free OH and OD groups in a zeolite of Si/Al=8.3 dealuminated by (NH4)2SiF6 treatment. Such a splitting is the best seen in low temperature spectra of OD groups. We found less acidic 3640 cm−1 (AlO)(SiO)2SiO1HAl(OSi)3 and more acidic 3625 cm−1 (SiO)3SiO1HAl(OSi)3 groups. The presence of these two kinds of hydroxyls corresponds to the presence of Si(2Al) and Si(1Al), respectively, detected in 29Si MAS NMR spectra. We also found a small amount of strongly acidic 3599 cm−1 hydroxyls interacting with extraframework Al species.  相似文献   

2.
The calcium silicate hydrate (C-S-H) phase resulting from hydration of a white Portland cement (wPc) in water and in a 0.3 M NaAlO(2) solution has been investigated at 14 and 11 hydration times, respectively, ranging from 6 h to 1 year by (27)Al and (29)Si MAS NMR spectroscopy. (27)Al MAS NMR spectra recorded at 7.05, 9.39, 14.09, and 21.15 T have allowed a determination of the (27)Al isotropic chemical shift (delta(iso)) and quadrupolar product parameter (P(Q) = C(Q)) for tetrahedrally coordinated Al incorporated in the C-S-H phase and for a pentacoordinated Al site. The latter site may originate from Al(3+) substituting for Ca(2+) ions situated in the interlayers of the C-S-H structure. The spectral region for octahedrally coordinated Al displays resonances from ettringite, monosulfate, and a third aluminate hydrate phase (delta(iso) = 5.0 ppm and P(Q) = 1.20 MHz). The latter phase is tentatively ascribed to a less-crystalline aluminate gel or calcium aluminate hydrate. The tetrahedral Al incorporated in the C-S-H phase has been quantitatively determined from (27)Al MAS spectra at 14.09 T and indirectly observed quantitatively in (29)Si MAS NMR spectra by the Q(2)(1Al) resonance at -81.0 ppm. A linear correlation is observed between the (29)Si MAS NMR intensity for the Q(2)(1Al) resonance and the quantity of Al incorporated in the C-S-H phase from (27)Al MAS NMR for the different samples of hydrated wPc. This correlation supports the assignment of the resonance at delta(iso)((29)Si) = -81.0 ppm to a Q(2)(1Al) site in the C-S-H phase and the assignment of the (27)Al resonance at delta(iso)((27)Al) = 74.6 ppm, characterized by P(Q)((27)Al) = 4.5 MHz, to tetrahedrally coordinated Al in the C-S-H. Finally, it is shown that hydration of wPc in a NaAlO(2) solution results in a C-S-H phase with a longer mean chain length of SiO(4) tetrahedra and an increased quantity of Al incorporated in the chain structure as compared to the C-S-H phase resulting from hydration of wPc in water.  相似文献   

3.
Spectroscopic characterization of natural calcite minerals   总被引:1,自引:0,他引:1  
The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm(-1). The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a=4.9781 A, c=17.1188 A. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.  相似文献   

4.
Hung LI  Wang SL  Kao HM  Lii KH 《Inorganic chemistry》2003,42(13):4057-4061
A new indium(III) silicate, K(2)In(OH)(Si(4)O(10)), has been synthesized by a high-temperature, high-pressure hydrothermal method. It crystallizes in the monoclinic space group P2(1)/m (No. 11) with a = 11.410(1) A, b = 8.373(1) A, c = 11.611(1) A, beta = 112.201(2) degrees, and Z = 4. The structure, which is analogous to that of K(2)CuSi(4)O(10), consists of unbranched vierer 4-fold chains of corner-sharing SiO(4) tetrahedra running along the b axis linked together via corner sharing by chains of trans-corner-sharing InO(4)(OH)(2) octahedra to form a 3-D framework which delimits 8-ring and 6-ring channels to accommodate K(+) cations. The presence of hydroxyl groups is confirmed by IR spectroscopy. The (29)Si MAS NMR exhibits four resonances at -88.6, -90.1, -97.4, and -98.2 ppm corresponding to four distinct crystallographic Si sites. A (1)H --> (29)Si CP/MAS NMR experiment was performed to assign the four resonances.  相似文献   

5.
Two (17)O-enriched hydrous magnesium silicates, the minerals hydroxyl-chondrodite (2Mg(2)SiO(4).Mg(OH)(2)) and hydroxyl-clinohumite (4Mg(2)SiO(4).Mg(OH)(2)), were synthesized. High-resolution "isotropic" (17)O (I = (5)/(2)) NMR spectra of the powdered solids were obtained using three- and five-quantum MAS NMR at magnetic field strengths of 9.4 and 16.4 T. These multiple-quantum (MQ) MAS spectra were analyzed to yield the (17)O isotropic chemical shifts (delta(CS)) and quadrupolar parameters (C(Q), eta and their "product" P(Q)) of the distinct oxygen sites resolved in each sample. The values obtained were compared with those found previously for forsterite (Mg(2)SiO(4)). The (17)O resonances of the protonated (hydroxyl) sites were recorded and assigned with the aid of (17)O [(1)H] cross-polarization and comparison with the spectrum of (17)O-enriched brucite (Mg(OH)(2)). Using all of these data, complete assignments of the five crystallographically inequivalent oxygen sites in hydroxyl-chondrodite and of the nine such sites in hydroxyl-clinohumite are suggested. The validity of these assignments are supported by the observation of a correlation between (17)O isotropic chemical shift and Si-O bond length. The (29)Si MAS NMR spectra of the two minerals were also obtained.  相似文献   

6.
The silica-pillared derivatives from kanemite (NaHSi(2)O(5).3H(2)O) were prepared by intercalation of dialkyldimethylammonium (DADMA) ion and pillaring with tetraethylorthosilicate. The formation of silica pillars between the silicate sheets was demonstrated by X-ray diffraction, (29)Si CP/MAS NMR, and TEM observation. The basal spacing depended on the chain length of DADMA. Nitrogen adsorption study showed that the specific surface area was enlarged over 1000 m(2) g(-1) by the pillaring and that the pore size was in the micropore region. Water and benzene adsorption isotherms revealed that the surface properties of the pillared derivatives show hydrophobic character.  相似文献   

7.
29Si chemical shift anisotropy (CSA) data have been determined from (29)Si MAS NMR spectra recorded at 14.1 T for a number of synthetic calcium silicates and calcium silicate hydrates. These are beta- and gamma-Ca(2)SiO(4), Ca(3)SiO(4)Cl(2), alpha-dicalcium silicate hydrate (alpha-Ca(2)(SiO(3)OH)OH), rankinite (Ca(3)Si(2)O(7)), cuspidine (Ca(4)Si(2)O(7)F(2)), wollastonite (beta-Ca(3)Si(3)O(9)), pseudowollastonite (alpha-Ca(3)Si(3)O(9)), scawtite (Ca(7)(Si(6)O(18))CO(3).2H(2)O), hillebrandite (Ca(2)SiO(3)(OH)(2)), and xonotlite (Ca(6)Si(6)O(17)(OH)(2)). The (29)Si MAS NMR spectra of rankinite and wollastonite clearly resolve manifolds of spinning sidebands from two and three Si sites, respectively, allowing the CSA parameters to be obtained with high precision for each site. For the (29)Si Q(1) sites in rankinite and cuspidine, the CSA asymmetry parameters (eta(sigma) approximately 0.6) contrast the general expectation that sorosilicates should possess small eta(sigma) values as a result of the nearly axially symmetric environments of the SiO(4) tetrahedra. The (29)Si CSA parameters provide an improved insight into the electronic and geometric environments for the SiO(4) tetrahedra as compared to the values solely for the isotropic chemical shift. It is shown that the shift anisotropy (delta(sigma)) and the CSA asymmetry parameter (eta(sigma)) allow a clear distinction of the different types of condensation of SiO(4) tetrahedra in calcium silicates. This relationship may in general be valid for neso-, soro-, and inosilicates. The CSA data determined in this work may form a valuable basis for (29)Si MAS NMR studies of the structures for tobermorites and calcium silicate hydrate phases resulting from hydration of Portland cements.  相似文献   

8.
丝光沸石水蒸气/酸浸渍脱铝的多核固体核磁共振研究   总被引:1,自引:0,他引:1  
采用1H,29Si,27Al魔角旋转固体核磁共振(MASNMR)及1H-29Si交叉极化(CP)技术研究丝光沸石水蒸气/酸浸渍脱铝过程中各种铝物质的结构与性质.结果表明,丝光沸石上骨架铝原子在水分子作用下,生成非骨架四配位铝物质[Al(OH)3(H2O)],分别在27Al谱δ45和1H谱δ3.0处出现共振信号,这种铝物质不同于扭曲四配位铝,在高温下进一步水合生成Al(OH)3(H2O)2和Al(OH)3(H2O)3,即非骨架五配位和六配位铝物质.1H-29SiCP和1H谱证实,水蒸气脱铝使丝光沸石产生了大量的硅羟基和铝羟基.  相似文献   

9.
Some silica-based solids, prepared by the sol/gel method in the presence of high Mn2+ concentrations, have been characterized by the 29Si, 27Al MAS NMR spectra and 29Si T1 measurements. The single-pulse 29Si and 27Al MAS NMR spectra have shown broad spinning sideband patterns that are interpreted in terms of anisotropic bulky magnetic susceptibility (BMS) and dipole-field effects. In the absence of paramagnetic isotropic shifts, the 29Si and 27Al nuclei observed in the single-pulse NMR spectra have been assigned to nuclei remote from paramagnetic centers. It has been demonstrated that the 29Si and 27Al nuclei, which are in the vicinity of the manganese ions, can be detected by the Hahn-echo MAS NMR experiments at different carrier frequencies.  相似文献   

10.
Titanium silicalite-1 (TS-1) is an important catalyst for selective oxidation reactions. However, the nature and structure of the active sites and the mechanistic details of the catalytic reactions over TS-1 have not been well-understood, leaving a continuous debate on the genesis of active sites on the TS-1 surface in the literature. In this work, the location of Si vacancies and [Ti(OSi)(4)] and [Ti(OSi)(3)OH] sites in the MFI (Framework Type Code of ZSM-5 (Zeolite Socony Mobile-Five)) framework has been studied using a full ab initio method with 40T clusters with a Si:Ti molar ratio of 39:1. It was shown that the former four energetically favorable sites for Si vacancies are T6, T12, T4, and T8 and for Ti centers of [Ti(OSi)(4)] are T10, T4, T8 and T11, being partially the same sites. Whether by replacing Si vacancies or substituting the fully coordinated Si sites, the most preferential site for Ti is T10, which indicates that the insertion mechanism does not affect the favorable sites of Ti in the MFI lattice. For the defective [Ti(OSi)(3)OH] sites, it was found that the Si vacancy at T6 with a Ti at its neighboring T9 site (T6-def-T9-Ti pair) is the most energetically favorable one, followed by a T6-def-T5-Ti pair with a small energy gap. These findings are significant to elucidate the nature of the active sites and the mechanism of reactions catalyzed by TS-1 and to design the TS-1 catalyst.  相似文献   

11.
The flexible chemical composition of the frameworks with tunable pore size and geometry of molecular dimensions makes zeolites widely used in chemical and petrochemical industry fields. The understanding of crystallization mechanism is important for a rational design of new zeolite with target structure and property, which however is still a big challenge in the field of material science. In this work, the specific spatial correlations/interactions between the SiO-···HO―Si hydrogen bonds within the charged framework of silicalite-1 (MFI topology) zeolite and the alkyl chains of tetrapropylammonium ion (TPA+) organic structure direction agents (OSDAs) were studied by one-dimensional (1D) and two-dimensional (2D) solid state-NMR spectroscopy in combination with other techniques, with the aim to shed light into the crystallization mechanism of silicalite-1. The "solvent-free" route was used to study the crystallization process. Silicalite-1 crystals were also prepared following the hydrothermal synthesis route. The structural properties of as-synthesized TPA-silicalite-1 samples during the crystallization were characterized by XRD and scanning electron microscopy (SEM) images, which showed the evolution of long-range periodic structure and cyrtal growth. The 1H-29Si CP/MAS NMR experiments showed that the reorganization of the silica or silicates occurred in the crystallization process. The lH-13C CP/MAS NMR experiments performed on the samples synthesized with different time indicated that the TPA+ ions in the amorphous samples experienced a constrained environment, forming the inorganic-organic composites. The splitting of the methyl carbon signal from TPA+ ions was observed in the 13C NMR spectra, which is the direct reflection of the interactions between the methyl groups and the silicate framework in the straight and zig-zag channels of silicalite-1. Two types of SiO-···H―OSi hydrogen bonds (SiO-···H―OSi hydrogen bond in-cage and SiO-···H―OSi hydrogen bond between lamellae) have been identified by 2D 1H double quantum (DQ)-single quantum (SQ) MAS NMR and 2H MAS NMR during the crystallization of silicalite-1. The SiO-···H―OSi hydrogen bonds between lamellae are formed and gradually transformed into the in-cage ones during the crystallization process. Their functions have been revealed in the formation of silicalite-1: the SiO-···H―OSi hydrogen bond in-cage provides the stereoscopic counterbalance for the positive charges from TPA+ ions and this stereoscopic electrostatic interaction is the key factor to transform inorganic-organic composites with the MFI structure property, even though the long-range periodic MFI structures have not been established yet; the SiO-···H―OSi hydrogen bond between lamellae acts as a connector to assemble the silicate species together to generate the zeolite framework. 2H MAS NMR spectra show that the SiOH nests exist in the zeolite framework even though the long-range periodic structures have been fully established.  相似文献   

12.
HZSM-5分子筛焙烧脱铝的27Al MQMAS NMR研究   总被引:1,自引:0,他引:1  
用29Si、27Al魔角旋转固体核磁共振(MAS NMR)结合二维多量子魔角旋转(2D MQMAS)技术对焙烧脱铝的HZSM-5分子筛中铝的配位状态进行了研究.结果表明,HZSM-5分子筛经焙烧后,在化学位移(δ)45处出现一宽峰信号,其主要来自扭曲四配位铝.通过二维三量子铝谱计算出扭曲四配位铝的四极作用常数约为5.2 MHz.对700和750 ℃焙烧样品的铝谱进行分峰拟合,发现在δ 30处又出现一个小峰,归属为非骨架五配位铝.同时,在750 ℃焙烧样品的二维多量子铝谱中直接观察到非骨架五配位铝的信号.焙烧温度低于700 ℃,脱铝不明显;高于700 ℃,引起分子筛骨架的显著脱铝.焙烧还造成部分骨架铝的信号变得“不可观测”.  相似文献   

13.
本文应用^29Si,^27AIMASNMR和XRD技术,测量了四种不同脱铝深度的稀土超稳Y沸石的骨架硅铝比,得到了一致的结果,并研究了稀土超稳Y沸石的脱铝过程和稀土离子和Y沸石骨架铝的机理.发现稀土离子存在时,Y沸石骨架中Si、Al的分布与相同硅铝比的HY不同,在浅、中度脱铝时,主要脱除的是Si(2Al)和Si(3Al)中的铝,深度脱铝时,主要是Si(1Al)和少量Si(2Al)中的铝,而Si(3Al)几乎不变,提出稀土离子最可能是位于方钠的Si(3Al)附近,平衡三个AlO 四面体上的负电荷,起到稳定Si(3Al)结构单元的作用.其次,稀土超稳Y沸石中总的非骨架铝(N~Al)~EF,随脱铝深度的增加而增加,仅只在REUSY-38的^27AIMAS NMR谱中观察到Al^3+非骨架铝的存在.^29Si,^27AIMASNMR  相似文献   

14.
Ion exchange of the sodium hydro sodalites [Na3(H2O)4]2-[Al3Si3O12]2 [Na4(H3O2)]2[Al3Si3O12]2 and [Na4(OH)]2[Al3Si3O12]2 with aqueous Pb(NO3)2 solutions yielded, whichever reactant sodalite phase was used, the same lead hydro sodalite, [Pb2(OH)-(H2O)3]2[Al3Si3O12]2. Thus, in the case of the non-basic reactant [Na3(H2O)4]2-[Al3Si3O12]2 an overexchange occurs with respect to the number of nonframework cationic charges. Rietveld structure refinement of the lead hydro sodalite based on powder X-ray diffraction data (cubic, a = 9.070 A, room temperature, space group P43n) revealed that the two lead cations within each polyhedral sodalite cage form an orientationally disordered dinuclear [Pb2(micro-OH)(micro-H2O)(H2O)2]3+ complex. Due to additional lead framework oxygen bonds the coordination environment of each metal cation (CN 3+3) is approximately spherical, and clearly the lead 6s electron lone pair is stereochemically inactive. This is also suggested by the absence of a small peak at 13.025 keV, attributed in other Pb2+-O compounds to an electronic 2p-6s transition, in the PbL3 edge XANES spectrum. 1H MAS NMR and FTIR spectra show that the hydrogen atoms of the aqua hydroxo complex (which could not be determined in the Rietveld analysis) are involved in hydrogen bonds of various strengths.  相似文献   

15.
Partially deuterated Ca3Al2(SiO4)y(OH)12−4y-Al(OH)3 mixtures, prepared by hydration of Ca3Al2O6 (C3A), Ca12Al14O33 (C12A7) and CaAl2O4 (CA) phases in the presence of silica fume, have been characterized by 29Si and 27Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca3Al2(OH)12 and Al(OH)3 phases were detected. From the quantitative analysis of 27Al NMR signals, the Al(OH)3/Ca3Al2(OH)12 ratio was deduced. The incorporation of Si into the katoite structure, Ca3Al2(SiO4)3−x(OH)4x, was followed by 27Al and 29Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27Al MAS-NMR components associated with Al(OH)6 and Al(OSi)(OH)5 environments. The 29Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From 29Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures.  相似文献   

16.
In order to shed light on the proton distributions and order/disorder in high-pressure delta-Al(OH)3 and delta-AlOOH phases, two-dimensional, high-resolution 1H CRAMPS (FSLG)-MAS NMR and 27Al 3QMAS NMR spectra have been obtained. For delta-Al(OH)3, the 1H CRAMPS-MAS NMR revealed two peaks with an intensity ratio close to 2:1. The 27Al MAS and 3QMAS NMR suggest a single Al site with a well-defined local structure. For delta-AlOOH, the 1H and 27Al NMR indicate the presence of a single H and Al site each. These results are consistent with crystal structures refined from X-ray diffraction. For comparison, 1H MAS and CRAMPS-MAS NMR spectra were also obtained for several other hydroxides/oxyhydroxides, including In(OH)3 and InOOH that have similar structures to delta-Al(OH)3 and delta-AlOOH, respectively. These data not only provide additional insights into the proton distributions in these important crystal structure classes but also together provide a better defined quantitative correlation between 1H chemical shift and hydrogen-bonding O...O distance.  相似文献   

17.
A numerical analysis of the 1H MAS NMR sideband pattern of the bridging OH groups in various zeolites of the aluminosilicate type (LTA, faujasite, erionite, mordenite, pentasil) and of the silicoaluminophosphate type (SAPO-5, −17, −34, −37) yields H-Al distances of the hydroxyl protons to the adjacent framework aluminium nucleus which cover a range between 0.234 and 0.252 nm. From the results, a relation between the H-Al distance and the size of the oxygen rings (6−, 8−, 10− and 12-membered oxygen rings) could be derived. Using 29Si CP/MAS NMR it was shown that the bridging OH groups in zeolites of the aluminosilicate type are located at the Si(nAl) sites with the largest possible number n. While the second coordination sphere of the T positions of the bridging OH groups in zeolites of the silicoaluminophosphate type (Si/(Al + P + Si) < 0.12) is occupied by the same number of phosphorus and aluminium atoms, the bridging OH groups in zeolites of the aluminosilicate type with medium framework aluminium densities are located at the Si(nAl) sites with n = 3, 2 and 1.  相似文献   

18.
19.
29SiNMR Investigation of Silicon-Aluminum Ordering in the Aluminosilicate Framework of Faujasite-Type Zeolites The high resolution magic angle spinning 29Si NMR spectra of a series of NaX and NaY zeolites with Si/Al ratios of 1.18 to 67 exhibit up to five sharp signals which could be assigned to the central silicon atoms of Si(OSi)4–n(OAl)n building units (n = 0–4) of the aluminosilicate framework. From the signal intensities the quantitative distribution of the building units and the Si/Al ratio of the aluminosilicate lattice have been estimated. By comparison of the building units obtained from the 29Si NMR spectra with those from theoretical model structures detailed information on silicon-aluminum ordering of the zeolite framework has been derived. Except for NaX of Si/Al = 1.4 a centrosymmetrical distribution of Si and Al atoms within a double-cubooctahedra unit has been found which agrees well with the Si/Al ordering scheme proposed by Dempsey.  相似文献   

20.
Calcium silicate hydrate (C-S-H) is the main constituent of hydrated cement paste and determines its cohesive properties. Because of the environmental impact of cement industry, it is more and more common to replace a part of the clinker in cement by secondary cementitious materials (SCMs). These SCMs are generally alumina-rich and as a consequence some aluminum is incorporated into the C-S-H. This may have consequences on the cohesion and durability of the material, and it is thus of importance to know the amount and the location of Al in C-S-H and what the parameters are that control these features. The present paper reports the (29)Si and (27)Al MAS NMR analyses of well-characterized C-A-S-H samples (C-S-H containing Al). These samples were synthesized using an original procedure that successfully leads to pure C-A-S-H of controlled compositions in equilibrium with well-characterized solutions. The (27)Al MAS NMR spectra were quantitatively interpreted assuming a tobermorite-like structure for C-A-S-H to determine the aluminum location in this structure. For this purpose, an in-house written software was used which allows decomposing several spectra simultaneously using the same constrained spectral parameters for each resonance but with variable intensities. The hypothesis on the aluminum location in the C-A-S-H structure determines the proportion of each silicon site. Therefore, from the (27)Al NMR quantitative results and the chemical composition of each sample, the intensity of each resonance line in the (29)Si spectra was set. The agreement between the experimental and calculated (29)Si MAS NMR spectra corroborates the assumed C-A-S-H structure and the proposed Al incorporation mechanism. The consistency between the results obtained for all compositions provides another means to assess the assumptions on the C-A-S-H structure. It is found that Al substitutes Si mainly in bridging positions and moderately in pairing positions in some conditions. Al in pairing site is observed only for Ca/(Si+Al) ratios greater than 0.95 (equivalent to 4 mmol.L(-1) of calcium hydroxide). Finally, the results suggest that penta and hexa-coordinated aluminum are adsorbed on the sides of the C-A-S-H particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号