首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison is made between two high resolution, surface-based, mass spectrometric methods: time-of-flight secondary ion mass spectrometry (TOF-SIMS) and matrix-assisted laser desorption/ionisation mass spectrometry (MALDI TOF-MS) in indication of abietic and gibberellic acids molecular profiles on different chromatographic thin layers. The analytes were applied to silica gel chromatographic thin layers with SIMS on-line interfacing channel, monolithic silica gel ultra-thin layers, and thin layers specifically designed for direct Raman spectroscopic analysis. Two MALDI matrices were used in this research: ferulic acid and 2,5-dihydroxybenzoic acid. The silica gel SIMS-interfacing channel strongly supported formation of numerous different MALDI MS fragments with abietic and gibberellic acids, and ferulic acid matrix. The most intense fragments belonged to [M-OH](+) and [M](+) ions from ferulic acid. Intense conjugates were detected with gibberellic acid. The MALDI MS spectrum from the monolithic silica gel surface showed very low analyte signal intensity and it was not possible to obtain MALDI spectra from a Raman spectroscopy treated chromatographic layer. The MALDI TOF MS gibberellic acid fragmentation profile was shielded by the matrix used and was accompanied by poor analyte identification. The most useful TOF-SIMS analytical signal response was obtained from analytes separated on monolithic silica gel and a SIMS-interfacing modified silica gel surface. New horizons with nanostructured surfaces call for high resolution MS methods (which cannot readily be miniaturised like many optical and electrochemical methods) to be integrated in chip and nanoscale detection systems.  相似文献   

2.
A major problem hampering the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for quantitative measurements is the inhomogeneous distribution of analytes and matrices in solid sample preparations. The use of ionic liquids as matrices for the qualitative and quantitative analysis of low molecular weight compounds like amino acids, sugars and vitamins was investigated. The ionic liquid matrices are composed of equimolar combinations of classical MALDI matrices (sinapinic acid, alpha-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid) with organic bases. These matrix systems allow a homogenous sample preparation with a thin ionic liquid layer having negligible vapour pressure. This leads to a facilitated qualitative and quantitative measurement of the analytes compared with classical solid matrices.  相似文献   

3.
The use of UV-absorbing molecules as matrices in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is well documented. The matrices that are currently used have low molecular weights (<300 Da) and thus, for a typical MALDI-TOF spectrum, the low-mass range (m/z 100-500) is dominated by matrix ions. Consequently, the applications of MALDI-TOFMS have been restricted mostly to the analysis of high molecular weight analytes. This report demonstrates the use of meso-tetrakis(pentafluorophenyl)porphyrin (F20TPP, MW 974.57) as a matrix in the MALDI-TOF mass spectrometric analysis of some commercial nonylphenol ethoxylates (4-(C(9)H(19))-C(6)H(4)-(OCH(2)CH(2))(n)-OH), in which the ethoxymer ion distribution ranges from 331-771 Da. When F20TPP was used without a sodium ion dopant, there were no MALDI signals for the ethoxylates. However, addition of sodium acetate to the sample produced MALDI spectra in which the ethoxymer molecules were sodiated to form [M + Na](+) ions. A comparison of the mass spectrometric data with those obtained when alpha-cyano-4-hydroxycinnamic acid (CHCA) was used as the matrix indicated that the F20TPP-induced spectra provided comparable data, with the advantage of having less matrix interference in the low-mass range (m/z 100-500). Thus, the use of F20TPP and similar porphyrins may provide the means to apply MALDI-TOF to the analysis of low molecular weight molecules with minimum interference from matrix signals. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral "fingerprint" generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.  相似文献   

5.
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable.  相似文献   

6.
Matrix‐assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in brain tissue. However, the detection of glycerolipids such as diacylglycerol (DAG) and triacylglycerol (TAG) in brain tissues is hindered in MALDI‐IMS because of the ion suppression effect from excessive ion yields of phosphatidylcholine (PC). In this study, we describe an approach that employs a homogeneously deposited metal nanoparticle layer (or film) for the detection of glycerolipids in rat brain tissue sections using IMS. Surface‐assisted laser desorption/ionisation IMS with sputter‐deposited Pt film (Pt‐SALDI‐IMS) for lipid analysis was performed as a solvent‐free and organic matrix‐free method. Pt‐SALDI produced a homogenous layer of nanoparticles over the surface of the rat brain tissue section. Highly selective detection of lipids was possible by MALDI‐IMS and Pt‐SALDI‐IMS; MALDI‐IMS detected the dominant ion peak of PC in the tissue section, and there were no ion peaks representing glycerolipids such as DAG and TAG. In contrast, Pt‐SALDI‐IMS allowed the detection of these glycerolipids, but not PC. Therefore, using a hybrid method combining MALDI and Pt‐SALDI (i.e., matrix‐enhanced [ME]‐Pt‐SALDI‐IMS), we achieved the simultaneous detection of PC, PE and DAG in rat brain tissue sections, and the sensitivity for the detection of these molecules was better than that of MALDI‐IMS or Pt‐SALDI alone. The present simple ME‐Pt‐SALDI approach for the simultaneous detection of PC and DAG using two matrices (sputter‐deposited Pt film and DHB matrix) would be useful in imaging analyses of biological tissue sections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is used as an alternative method for the rapid diagnosis of albuminuria. This technique requires no further sample pretreatment than simply mixing the urine sample with a MALDI matrix and drying under ambient conditions. The resulting MALDI mass spectra reveal albumin ions having charges ranging from +1 to +5. The detection of albumin is possible using any of the three most common MALDI matrices - sinapinic acid (SA), 2,5-dihydroxybenzoic acid (2,5-DHB), or 4-hydroxy-alpha-cyanocinnamic acid (alpha-CHC). Using this analytical approach, the limit of detection for albumin in urine is 10(-6) M, approximately 5 to 10 times lower than that detectable through conventional chemical testing.  相似文献   

8.
In our continuing studies to isolate water-soluble vacuolar pigments, we expect to elucidate more structural details using mass spectrometry (MS). Because of its sensitivity, only a small amount of pigment extracted from natural plants is required for MS measurement. Nuclear magnetic resonance is also a useful spectroscopic method for structural determination. In this study, two soft ionization techniques, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), on time-of-flight (TOF) mass spectrometers, were used to analyze five polyacylated anthocyanins with more than two aromatic acid molecules in the side chains. ESI is advantageous for the detection of individual molecular ions, while MALDI is essential for the detection of characteristic fragment ions originating from the anthocyanidin. Although 2,5-dihydroxybenzoic acid (DHBA) is an effective matrix in MALDI-TOFMS to obtain informative fragment ions of polyacylated anthocyanins, α-cyano-4-hydroxycinnamic acid (CHCA) is the preferred matrix for the identification of aglycones. In particular, in measurements of polyacylated anthocyanins with two acylated glycoside chains, fragment ions originating from anthocyanidin can only be observed in MALDI-TOFMS using CHCA as the matrix.  相似文献   

9.
A large number of matrix substances have been used for various applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The majority of matrices applied in ultraviolet-MALDI MS are crystalline, low molecular weight compounds. A problem encountered with many of these matrices is the formation of hot spots, which lead to inhomogeneous samples, thus leading to increased measurement times and hampering the application of MALDI MS for quantitative purposes. Recently, ionic (liquid) matrices (ILM or IM) have been introduced as a potential alternative to the classical crystalline matrices. ILM are equimolar mixtures of conventional MALDI matrix compounds such as 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CCA) or sinapinic acid (SA) together with organic bases [e.g., pyridine (Py), tributylamine (TBA) or N,N-dimethylethylenediamine (DMED)]. The present article presents a first overview of this new class of matrices. Characteristic properties of ILM, their influence on mass spectrometric parameters such as sensitivity, resolution and adduct formation and their application in the fields of proteome analysis, the measurement of low molecular weight compounds, the use of MALDI MS for quantitative purposes and in MALDI imaging will be presented. Scopes and limitations for the application of ILM are discussed.  相似文献   

10.
Analysis of low molecular weight compounds (LMWC) in complex matrices by vacuum matrix-assisted laser desorption/ionization (MALDI) often suffers from matrix interferences, which can severely degrade limits of quantitation. It is, therefore, useful to have available a range of suitable matrices, which exhibit complementary regions of interference. Two newly synthesized α-cyanocinnamic acid derivatives are reported here; (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) and (2E)-3-(anthracen-9-yl)-2-cyanoprop-2enoic acid (AnCCA). Along with the commonly used α-cyano-4-hydroxycinnamic acid (CHCA), and the recently developed 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrices, these constitute a chemically similar series of matrices covering a range of molecular weights, and with correspondingly differing ranges of spectral interference. Their performance was compared by measuring the signal-to-noise ratios (S/N) of 47 analytes, mostly pharmaceuticals, with the different matrices using the selected reaction monitoring (SRM) mode on a triple quadrupole instrument equipped with a vacuum MALDI source. AnCCA, NpCCA and Cl-CCA were found to offer better signal-to-noise ratios in SRM mode than CHCA, but Cl-CCA yielded the best results for 60% of the compounds tested. To better understand the relative performance of this matrix series, the proton affinities (PAs) were measured using the kinetic method. Their relative values were: AnCCA > CHCA > NpCCA > Cl-CCA. This ordering is consistent with the performance data. The synthesis of the new matrices is straightforward and they provide (1) tunability of matrix background interfering ions and (2) enhanced analyte response for certain classes of compounds.  相似文献   

11.
The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to detect gaseous aldehydes. Among them, two hydrazide (2‐hydroxybenzohydrazide and 3‐hydroxy‐2‐naphthoic acid hydrazide) and two hydrazine reagents [2‐hydrazinoquinoline and 2,4‐dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI‐MS. Results from accurate mass measurements by JMS‐S3000 Spiral‐TOF suggested that protonated ion peaks corresponding to [M + H]+ from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time‐dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI‐MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI‐MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. The development of solvent-free sample preparation methods has enabled MALDI to analyze insoluble materials and, interestingly, can provide higher-quality mass spectral data. Although the utility of solvent-free sample preparation for MALDI has been demonstrated, the reasons for its success are only now being discovered. In this study, we use microscopy tools to image samples prepared using solvent-free methods to examine the morphology of these samples. The samples are prepared using a simple vortex method. Our results show that the average particle size of typical MALDI matrices is reduced from their original tens to hundreds of micrometers to hundreds of nanometers. This size reduction of the matrix occurs in one minute using the vortex method. We also observe remarkably smooth and homogeneous sample morphologies for the laser to interrogate, especially considering the relatively crude methods used to prepare our samples.  相似文献   

14.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

15.
A low molecular mass polyester was analyzed by desorption/ionization on porous silicon (DIOS) mass spectrometry. The results were compared with those of matrix-assisted laser desorption ionization (MALDI) mass spectrometry using matrixes of alpha-cyano-4-hydroxycinnamic acid (CHCA) and 10,15,20-tetrakis(pentafluorophenyl)porphyrin (F20TPP). The CHCA matrix was not suitable for characterization of low molecular mass components of the polyester because the matrix-related ions interfered with the component ions. On the other hand, the F20TPP matrix showed no interference because no matrix-related ions appeared below m/z 822. However, the solvent selection for determining optimal conditions of sample preparation was limited, because F20TPP does not dissolve readily in any of the available organic solvents. In the DIOS spectra, the polymer ions were observed at high sensitivity without a contaminating ion. No matrix is needed for DIOS spectra of low molecular mass polyesters, facilitating sample preparation and selectivity of a precursor ion in post-source decay measurements.  相似文献   

16.
New data on sample preparation and matrix selection for the fast screening of androgenic anabolic steroids (AAS) by matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) is presented. The rapid screening of 15 steroids included in the World Anti‐Doping Agency (WADA) prohibited list using MALDI was evaluated. Nine organic and two inorganic matrices were assessed in order to determine the best matrix for steroid identification in terms of ionisation yield and interference by characteristic matrix ions. The best results were achieved for the organic matrices 2‐(4‐hydroxyphenylazo)benzoic acid (HABA) and trans‐3‐indoleacrylic acid (IAA). Good signals for all the steroids studied were obtained for concentrations as low as 0.010 and 0.050 µg/mL on the MALDI sample plate for the HABA and IAA matrices, respectively. For these two matrices, the sensitivity achieved by MALDI is comparable with the sensitivity achieved by gas chromatography/mass spectrometry (GC/MS), which is the conventional technique used for AAS detection. Furthermore, the accuracy and precision obtained with MALDI are very good, since an internal mass calibration is performed with the matrix ions. For the inorganic matrices, laser fluences higher than those used with organic matrices are required to obtain good MALDI signals. When inorganic matrices were used in combination with glycerol as a dispersing agent, an important reduction of the background noise was observed. Urine samples spiked with the study compounds were processed by solid‐phase extraction (SPE) and the screening was consistently positive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and “MALDI silent”, i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.  相似文献   

18.
So far, there have been only a few matrices reported for detection of polysaccharides with molecular weight higher than 3000 Daltons by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). In this work, we found that 2',4',6'-trihydroxyacetophenone (THAP) is a good matrix for MALDI time-of-flight MS analysis of polysaccharides with broad mass range. Large polysaccharides, dextrans, glycoproteins and polysialic acids have been successfully detected by MALDI-MS with THAP as matrix.  相似文献   

19.
The applicability of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to the analysis of wax esters (WEs) was investigated. A series of metal salts of 2,5-dihydroxybenzoic acid (DHB) was synthesized and tested as possible matrices. Alkali metal (Li, Na, K, Rb, Cs) and transition metal (Cu, Ag) salts were studied. The matrix properties were evaluated, including solubility in organic solvents, threshold laser power that should be applied for successful desorption/ionization of WEs, the nature of the matrix ions and the mass range occupied by them, and the complexity of the isotope clusters for individual metals. Lithium salt of dihydroxybenzoic acid (LiDHB) performed the best and matrices with purified lithium isotopes ((6)LiDHB or (7)LiDHB) were recommended for WEs. Three sample preparation procedures were compared: (1) mixing the sample and matrix in a glass vial and deposition of the mixture on a MALDI plate (Mix), (2) deposition of sample followed by deposition of matrix (Sa/Ma), and (3) deposition of matrix followed by deposition of sample (Ma/Sa). Morphology of the samples was studied by scanning electron microscopy. The best sample preparation technique was Ma/Sa with the optimum sample to matrix molar ratio 1 : 100. Detection limit was in the low picomolar range. The relative response of WEs decreased with their molecular weight, and minor differences between signals of saturated and monounsaturated WEs were observed. MALDI spectra of WEs showed molecular adducts with lithium [M + Li](+). Fragments observed in postsource decay (PSD) spectra were related to the acidic part of WEs [RCOOH + Li](+) and they were used for structure assignment. MALDI with LiDHB was used for several samples of natural origin, including insect and plant WEs. A good agreement with GC/MS data was achieved. Moreover, MALDI allowed higher WEs to be analyzed, up to 64 carbon atoms in Ginkgo biloba leaves extract.  相似文献   

20.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号