首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of oxygen with rhodium complexes containing N-heterocyclic carbenes was found to give dioxygen complexes with rare square planar geometries and unusually short O-O bond lengths. Analysis of the bonding in these complexes by Rh L-edge X-ray absorption spectroscopy (XAS), Raman spectroscopy, and DFT calculations provides evidence for a bonding model in which singlet oxygen is bound to a Rh(I) d8 metal complex, rather than the more common Rh(III) d6 peroxo species with octahedral geometry and O-O bond lengths in the 1.4-1.5 A range.  相似文献   

2.
Mixed Nb-Mo oxides were prepared by solid-state reaction of Nb(V) and Mo(VI) oxides at 973-1123 K. Optimal conditions were determined for the formation of the Mo3Nb2O14 compound. As established by Rietveld refinement of the powder X-ray diffraction patterns, the Mo3Nb2O14 oxide has the tetragonal cell with a = 23.150(6) A and c = 3.998(4) A and a tunnel structure similar to that of the Mo5O14 oxide. The solids were characterized by several physical techniques, including scanning and transmission electron microscopy, FT-IR, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and electron spin resonance spectroscopy. It has been shown that the Mo3Nb2O14 solid prepared in air at 973-1073 K after cooling to room temperature contains high amounts of Mo(V) species (ca. 1% of total molybdenum). The presence of paramagnetic species correlates with the intense green color of the solids and the strong d-d transition band in the UV-visible spectra, typical for the d1 species. The amount of paramagnetic species does not depend on the solid annealing and/or on the small variations of its composition. Neither is it related to the oxygen release upon the solid heating, being therefore an intrinsic property of the Mo3Nb2O14 oxide. The unusual stabilization of reduced Mo species in the highly oxidizing conditions was explained by the substitution disorder between Nb and Mo atoms. It is supposed that a configuration containing mu3 oxygen bonded to three Mo(VI) atoms is unstable and decomposes, leading to a Mo(V) center and a hole in the valence band.  相似文献   

3.
Zheng Y  Zheng L  Zhan Y  Lin X  Zheng Q  Wei K 《Inorganic chemistry》2007,46(17):6980-6986
A high yield of the dimer-type heterostructure of Ag/ZnO nanocrystals with different Ag contents is successfully prepared through a simple solvothermal method in the absence of surfactants. The samples are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and IR spectroscopy. The results show that all samples are composed of metallic Ag and ZnO; Ag nanoparticles locate on the surface of ZnO nanorods; the binding energy of Ag 3d(5/2) for the Ag/ZnO sample with a Ag content of 5.0 atom % shifts remarkably to the lower binding energy compared with the corresponding value of pure metallic Ag because of the interaction between Ag and ZnO nanocrystals; the concentration of oxygen vacancy for the as-synthesized samples varies with the increasing Ag content, and the Ag/ZnO sample with a Ag content of 5.0 atom % has the largest density of oxygen vacancy. In addition, the relationship between their structure and photocatalytic property is investigated in detail. It is found that the photocatalytic property is closely related to its structure, such as heterostructure, oxygen defect, and crystallinity. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of ZnO nanorods promotes the separation of photogenerated electron-hole pairs and thus enhances the photocatalytic activity.  相似文献   

4.
We present a comparison between experimental and theoretical X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) of 5-fluorouracil compounds, with an emphasis on the effects of the inclusion of nickel in the structure. By focusing on the 1s thresholds of carbon, nitrogen, oxygen, and fluorine it was possible to provide a complete picture of the occupied and unoccupied partial density of states of the 5-fluorouracil systems. Spectra calculated using density functional theory are compared to experimental results. Most experimental results agree well with our theoretical calculations for the XAS and XES of the compounds. All spectral features are assigned. Our results reveal that the nickel in the compound is coordinated with the nitrogen sites of the 5-fluorouracil ligands.  相似文献   

5.
《结构化学》2019,38(12)
Understanding electronic structure is crucial to enhance the battery performance. Soft X-ray spectroscopy(SXS) is one of the most effective methods to provide direct probe of electronic states. Here, spectroscopic measurements of transition metal 3 d and oxygen 2 p states are simply reviewed. Then, we mainly focus on the perspective of the development direction of modern SXS techniques. Although the true power of recently developed high efficiency mapping of resonant inelastic X-ray scattering(m RIXS) has been apparent for materials and chemistry studies, great challenges remain for mRIXS spectroscopic interpretation, and the understanding of the battery materials on novel redox activities remains elusive.  相似文献   

6.
The stability of the Pt-3d-Pt(111) (3d = Ti, V, Cr, Mn, Fe, Co, or Ni) bimetallic surface structures in the presence of adsorbed oxygen has been investigated by means of density functional theory (DFT). The dissociative binding energies of oxygen on Pt-3d-Pt(111) (i.e., subsurface 3d monolayer) and 3d-Pt-Pt(111) (i.e., surface 3d monolayer) were calculated. All of the Pt-3d-Pt(111) surfaces were found to have weaker oxygen binding energies than pure Pt(111) whereas all of the 3d-Pt-Pt(111) surfaces were found to have stronger oxygen binding energies than pure Pt(111). The total heat of reaction was calculated for the segregation for 3d metal atoms from Pt-3d-Pt(111) to 3d-Pt-Pt(111) when exposed to a half monolayer of oxygen. All of the Pt-3d-Pt(111) subsurface structures were predicted to be thermodynamically unstable with adsorbed oxygen. In addition, the segregation of subsurface Ni and Co to the surfaces of Pt-Ni-Pt(111) and Pt-Co-Pt(111) was investigated experimentally using Auger electron spectroscopy (AES) and high-resolution electron energy loss spectroscopy (HREELS). AES and HREELS confirmed the trend predicted by DFT modeling and showed that both the Pt-Ni-Pt(111) and Pt-Co-Pt(111) surface structures were unstable in the presence of adsorbed oxygen. The activation barrier of the segregation of surbsurface Ni and Co atoms was determined to be 15 +/- 2 and 7 +/- 1 kcal/mol, respectively. These results are further discussed for their implication in the design and selection of cathode bimetallic electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrode membrane (PEM) fuel cells.  相似文献   

7.
Diesel soot (Euro IV and Euro VI) was investigated with spectroscopic methods such as near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoemission spectroscopy (XPS). C and O K-edge NEXAFS show that structural disorder on the surface is accompanied by a higher amount of oxygen functional groups. O K-edge NEXAFS and O1s XPS results are discussed with the aim to elucidate the nature of the oxygen surface species. The analysis of the data presented here allows the postulation of a hypothetical structure for soot samples emitted by diesel engines.  相似文献   

8.
The synthesis of nickel nanoparticles using poly(N-vinilpyrrolidone) (PVP) as protective agent was studied. The nanoparticles were prepared in air according to a modified polyol route, using nickel chloride as precursor and sodium borohydride as reducing agent. Samples with different nickel/PVP ratio were obtained. The X-ray diffraction and transmission electron microscopy (TEM) measurements indicate the occurrence of face-centered cubic metallic nickel nanoparticles with a medium diameter of 3.8 nm and good size dispersion. Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) data show an effective interaction between the nickel nanoparticles surface and the carboxyl oxygen atoms of PVP. Magnetic measurements show single-domain nonideal superparamagnetism behavior due to dipolar magnetic coupling between particles.  相似文献   

9.
Magnetic Fe3O4/ZnO-CdO/reduced graphene oxide (MFZC/RGO) has been synthesized by simple hydrothermal method. The structure and morphology were investigated by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), Vibrating sample magnetometer (VSM), Raman and Fourier-transform infrared spectroscopy (FTIR). MFZC/RGO was applied as catalyst in degradation of methylene blue (MB), rhodamin B (RhB) and methylorange (MO) under ultrasonic irradiation. Based on the results, excellent degradation efficiencies of MB, RhB and MO (>99%) were achieved within 10, 20 and 20 min, respectively under oxygen flow. Moreover the catalytic property of MFZC/RGO was investigated in oxidation of styrene, α-methyl styrene, cyclohexene and cyclooctene under oxygen flow. In addition, MFZC/RGO can be easily collected and separated by an external magnet. The catalyst displayed negligible loss in activity and selectivity within several successive runs due to super paramagnetism.  相似文献   

10.
利用热脱附-离子捕获检测器(TPD-ITD)、四极质谱(QMS)、 X光电子能谱(XPS)、 X光衍射(XRD)等方法, 研究了在CdO表面层中 17O、 18O的富集现象。所获结果显示, CdO表面 Cd(OH)2-CdCO3层在形成过程中对含 17O、 18O的氧分子有选择包结能力。  相似文献   

11.
Ultrathin chromium oxide films were prepared on a W(100) surface under ultrahigh-vacuum conditions and investigated in situ by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. The results show that, at Cr coverage of less than 1 monolayer, CrO2 is formed by oxidizing pre-deposited Cr at 300-320 K in approximately 10(-7) mbar oxygen. However, an increase of temperature causes formation of Cr2O3. At Cr coverage above 1 monolayer, only Cr2O3 is detected.  相似文献   

12.
采用FeCl3·6H2O,Cu(NO3)2·3H2O,KSCN,氧化BP-2000和三聚氰胺分别作为铁源、铜源、硫源、碳源和氮源,制备了一系列非贵金属氧还原电催化剂.通过透射电子显微镜、X射线粉末衍射、X射线光电子能谱和电感耦合等离子体原子发射光谱等表征了催化剂的形貌和结构,并通过旋转圆盘和旋转环盘测试研究了催化剂的性能,分析了铜,硫掺杂对于催化剂性能的提升作用.结果表明,与铜掺杂相比,硫掺杂能更大幅度地提高催化剂的周转率(TOF),并有效降低过氧化氢产率;同时铜,硫双掺杂的催化剂具有更高的TOF和更低的过氧化氢产率.  相似文献   

13.
The ReOX(2)(met) compounds (X = Cl, Br) adopt a distorted octahedral structure in which a carboxylato oxygen lies trans to the Re=O bond, whereas the equatorial plane is occupied by two cis halides, an NH(2), and an SCH(3) group. Coordination of the SCH(3) unit creates an asymmetric center, leading to two diastereoisomers. X-ray diffraction studies reveal that the crystals of ReOBr(2)(d,l-met).1/2H(2)O and ReOBr(2)(d,l-met).1/2CH(3)OH contain only the syn isomer (S-CH(3) bond on the side of the Re=O bond), whereas ReOCl(2)(d-met) and ReOCl(2)(d,l-met) consist of the pure anti isomer. (1)H NMR spectroscopy shows that both isomers coexist in equilibrium in acetone (anti/syn ratio = 1:1 for X = Br, 3:1 for X = Cl). Exchange between these two isomers is fast above room temperature, but it slows down below 0 degrees C, and the sharp second-order spectra of both isomers at -20 degrees C were fully assigned. The coupling constants are consistent with the solid-state conformations being retained in solution. Complexes of the type [ReOX(2)(His-aa)]X (X = Cl, Br) are isolated with the dipeptides His-aa (aa = Gly, Ala, Leu, and Phe). X-ray diffraction work on [ReOBr(2)(His-Ala)]Br reveals the presence of distorted octahedral cations containing the Re=O(3+) core and a dipeptide coordinated through the histidine residue via the imidazole nitrogen, the terminal amino group, and the amide oxygen, the site trans to the Re=O bond being occupied by the oxygen. The alanine residue is ended by a protonated carboxylic group that does not participate in the coordination. The constant pattern of the(1)H NMR signals for the protons in the histidine residue confirms that the various dipeptides adopt a similar binding mode, consistent with the solid-state structure being retained in CD(3)OD solution.  相似文献   

14.
The electrochemical changes induced by an electric field in Fe-doped SrTiO(3) have been investigated by X-ray absorption spectroscopy (XANES and EXAFS), electron paramagnetic resonance (EPR) and Raman spectroscopy. A detailed study of the Fe dopant in the regions around the anode and cathode reveals new insights into the local structure and valence state of Fe in SrTiO(3) single crystals. The ab initio full multiple-scattering XANES calculations give an evidence of the oxygen vacancy presence in the first coordination shell of iron. Differences in the length and disorder of the Fe-O bonds as extracted from EXAFS are correlated to the unequivocal identification of the defect type by complementary spectroscopical techniques to identify the valence state of the Fe-dopant and the presence of the Fe - V(?) complexes. Through this combinatorial approach, novel structural information on Fe - V(?) complexes is provided by X-ray absorption spectroscopy, and the relation of Fe-O bond length, doping level and oxidation state in SrTi(1-x)Fe(x)O(3) is briefly discussed.  相似文献   

15.
通过水相重构法合成了Ce改性的Mg-Al复合金属氧化物HTc-Ce,采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和氮气吸附-脱附表征了复合金属氧化物的组成和表面结构.水相重构过程使复合金属氧化物产生更多缺陷位,从而具有更多碱性位.Ce通过液相重构过程有效进入到水滑石的骨架,撑大了水滑石的层间距,进一步增加了催化剂的可接触碱性位,同时氧化铈丰富的氧空位显著提高了表面碱性位,特别是强碱性位的数量.XPS实验结果表明,三价Ce在氧化铈中的含量约为30%,氧空位提高有助于改善表面氧的迁移.原位红外漫反射(in situ DRIFTS)证实增加了表面低配氧的数量,CO2-程序升温脱附(CO2-TPD)实验证实了Ce的引入提高了表面强碱性位浓度.水相重构法合成Ce修饰的Mg-Al复合金属氧化物对于丙酮自缩合反应具有高效活性,HTc-Ce-3.2催化的丙酮转化率达到56.8%,是HTc催化剂的2.5倍,该催化剂因其层间距增加和结构疏松更有利于五聚产物的生成.  相似文献   

16.
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.  相似文献   

17.
含氯挥发有机物(CVOCs)广泛用于化工原料以及有机溶剂,由于其毒性大,难降解,直接排放可引起严重的空气污染问题,采用催化燃烧的技术可以实现CVOCs高效净化,其关键在于高活性和高稳定性的催化剂.CVOCs净化催化剂主要有负载型贵金属催化剂、(复合)氧化物催化剂和复合分子筛催化剂.我们以具有高稳定性的LaMnO3钙钛矿为研究对象,主要考察了不同制备方法对于氯乙烯催化燃烧性能的影响;并通过XRD,Raman,N2-吸附脱附,O2-TPD,H2-TPR,ICP-AES,XPS等表征方法研究催化剂的结构和物化性能.性能评价结果表明,MnO2虽具有良好的催化性能,但LaMnO3催化剂则具有更好的循环稳定性.同时,制备方法对LaMnO3催化剂上氯乙烯催化燃烧的性能有显著的影响,其活性高低的顺序为:溶胶凝-胶法(SG)>共沉淀法(CP)>硬模版剂法(HT)>水热法(HM),其中LaMnO3-SG催化剂在182℃时氯乙烯的转化率即可达到90%.XPS结果表明,不同的制备方法导致LaMnO3催化剂表面La和Mn的富集程度不同,并显著影响了催化剂表面Mn离子的价态、分布和氧空穴的数量.其中,LaMnO3-SG催化剂具有最高的表面Mn4+浓度,其对应的氯乙烯催化燃烧活性最高.而对于LaMnO3-HM催化剂,La(OH)3的生成导致其具有最高的表面La/Mn比(2.29)和最低的表面Mn4+浓度.由XPS计算氧空穴浓度可知,LaMnO3-SG催化剂氧空穴浓度(1.03)远高于LaMnO3-HM催化剂表面的氧空穴浓度(0.07),进而LaMnO3-SG在O2-TPD中表现出更高的O2脱附量.进一步分析可知Mn4+离子浓度与氧空穴浓度成正相关的关系,即:Mn4+离子浓度越高,则表面氧空穴浓度越高.而催化剂表面氧空穴浓度越高,则有利于氧在催化剂表面的吸附和活化,从而使得催化剂表面氧物种的浓度增加,这与O2-TPD结果一致.同时,制备方法对催化剂氧化还原性能也有显著的影响,由H2-TPR所得催化剂的耗氢量顺序为:LaMnO3-SG>LaMnO3-CP>LaMnO3-HT>LaMnO3-HM,这与它们催化活性的顺序一致.结合XPS和H2-TPR结果可知,催化剂表面Mn4+/Mn3+比例高,则催化剂的氧化还原能力也越强.以上分析表明,LaMnO3催化剂的催化活性与催化剂表面Mn4+浓度和氧空穴数量相关.具有较高的Mn4+浓度有利于氯乙烯在催化剂表面吸附;而氧空穴数量的增加有利于氧在催化剂表面的吸附和活化,从而提高氯乙烯催化燃烧的反应性能.  相似文献   

18.
Fluorite-type Ce0.5Zr0.5O2 and Ce0.5Hf0.5O2 have been synthesized by a solution combustion route, and their oxygen release and reduction have been investigated up to 850 degrees C. On reduction, the zirconium system forms two pyrochlore phases, Ce2Zr2O7 (pyrochlore-I) and Ce2Zr2O6.2 (pyrochlore-II), while the hafnium system forms only a disordered fluorite phase with the composition Ce0.5Hf0.5O1.77, under the same experimental conditions. The crystal structures of the reduction products have been characterized by powder X-ray diffraction and Rietveld refinement, and their electronic structures have been investigated by photoelectron spectroscopy and electrical conductivity measurements. Pyrochlore-I (a = 10.6727(4) A) is a semiconductor, while pyrochlore-II (a = 10.6463(8) A) is a good conductor (with a nearly temperature independent resistivity of approximately 2.5 ohm.cm in the 400-1000 K range). X-ray photoelectron spectroscopy (XPS) shows an admixture of Ce(5d,6s) with Zr(4d) and O(2p) and a significant density of states near EF in the highly reduced pyrochlore-II phase. The changes have been rationalized in terms of a qualitative energy band scheme that brings out the special role of zirconium vis-à-vis hafnium in the reduction/oxygen release properties of Ce0.5Zr0.5O2 and Ce0.5Hf0.5O2.  相似文献   

19.
A series of Ni(c)Mg(1-c)O solid solutions are characterized by means of synchrotron radiation X-ray diffraction and X-ray absorption near-edge-structure spectroscopy at oxygen K-edge (532 eV). A dramatic drop of the pre-edge peak intensity is observed in the Ni(c)Mg(1-c)O system upon dilution. It can be attributed to a decrease of 3d(8)(Ni(2+))-2p(O(2-)) mixing upon dilution with magnesium ions due to a decrease of the number of 3d vacancies as nickel ion is replaced by magnesium ion. Similarly, the decrease of the number of 4s and 4p vacancies also leads to a decrease of 4s4p(Ni(2+))-2p(O(2-)) hybridization, and hence a drop of intensities of features B and C. The features E and F are more sensitive to the increase of the degree of disorder upon dilution than feature D, revealing that the latter is mainly dependent by the medium-range order.  相似文献   

20.
The dissociation behaviour and valence-electronic structure of water adsorbed on clean and oxygen-covered Ru{0001}, Rh{111}, Pd{111}, Ir{111} and Pt{111} surfaces has been studied by high-resolution X-ray photoelectron spectroscopy with the aim of identifying similarities and trends within the Pt-group metals. On average, we find higher reactivity for the 4d metals (Ru, Rh, Pd) as compared to 5d (Ir, Pt), which is correlated with characteristic shifts in the 1b(1) and 3a(1) molecular orbitals of water. Small amounts of oxygen (< 0.2 ML) induce dissociation of water on all five surfaces, for higher coverages (> 0.25 ML) only intact water is observed. Under UHV conditions these higher coverages can only be reached on the 4d metals, the 5d metals are, therefore, not passivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号