首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complexes [M(bpy)(2)(Q)](PF(6)) (bpy = 2,2'-bipyridyl; M = Ru, Os; Q = 3,5-di-tert-butyl-N-phenyl-1,2-benzoquinonemonoimine) were isolated and studied by X and W band EPR in a dichloromethane solution at ambient temperatures and at 4 K. For M = Ru, the (14)N hyperfine splitting confirms the Ru(II)/semiquinone formulation, although at a > 1 mT, the (99,101)Ru satellite coupling is unusually high. W band EPR allowed us to determine the relatively small g anisotropy Delta g = g(1) - g(3) = 0.0665 for the ruthenium complex. The osmium analogue exhibits a much higher difference Delta g = 0.370, which is attributed not only to the larger spin-orbit coupling constant of Os versus that of Ru but also to a higher extent of metal contribution to the singly occupied molecular orbital. The difference Delta E between the oxidation and reduction potentials of the radical complexes is larger for the ruthenium compound (Delta E = 0.87 V) than for the osmium analogue (Delta E = 0.72), confirming the difference in metal/ligand interaction. The electrochemically generated states [M(bpy)(2)(Q)](n+), n = 0, 1, 2, and 3, were also characterized using UV-vis-near-infrared spectroelectrochemistry.  相似文献   

2.
3.
《Polyhedron》1987,6(5):1131-1134
A reaction between Os2(O2CCH3)4Cl2 and vdpp [vdpp = 1,1-bis(diphenylphosphino) ethene] was investigated. When the reactants, in the presence of LiCl, were heated in toluene OsCl2(vdpp)2,1, was formed. In a similar reaction Ru2(O2CCH3)4Cl with vdpp afforded RuCl2(vdpp)2,2. The molecular structures of1 and2 were elucidated using X-ray crystallography. Single crystals of1 and2 grown from dichloromethanehexane crystallize in the space group P21/c with these cell dimensions: a = 11.046(2)Å, b = 18.168(3)Å, c = 12.678(3)Å, β = 110.24(2)° and V = 2387(2)Å3 for1 and a = 11.055(1)Å, b = 18.199(3)Å, c = 12.693(2)Å, β = 110.16(1)°, V = 2392(1)Å3 for2. The molecules of1 and2 are isostructural. Metal atoms reside on inversion centers relating the two halves of the molecules. The complexes are six-coordinate with two four-membered chelate rings and trans chlorine atoms. For RuCl2(vdpp)2 the PMP angle in the chelate ring is 73.13(2)° and the PCP angle in the chelate ring is 98.6(1)°. These values are 72.74(3)° and 97.9(2)°, respectively, for OsCl2(vdpp)2. There is a disordered dichloromethane solvent molecule present in the lattice and there are no unusual intermolecular contacts.  相似文献   

4.
5.
The electronic g-tensor and hyperfine coupling constants were calculated for cyanide coordination complexes [M(CN)4]3- (M = Ni, Pd, Fe, Ru, Os) in KCl or NaCl host lattices through an embedded calculation approach using the Density Functional Theory and compared with previous experiments. For all tested complexes, the B3LYP functional is in good agreement with the experiments for the hyperfine coupling constants. For the electronic g-tensor calculations, performed using the coupled perturbed SCF theory, some discrepancies were found, and the best agreements with the experimental values were achieved by the B3LYP functional.  相似文献   

6.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

7.
The influences of R, the alpha-diimine, and the transition metal M on the excited-state properties of the complexes [M(SnR3)2(CO)2(alpha-diimine)] (M = Ru, Os; R = Ph, Me) have been investigated. Various synthetic routes were used to prepare the complexes, which all possess an intense sigma-bond-to-ligand charge-transfer transition in the visible region between a sigma(Sn-M-Sn) and a pi*(alpha-diimine) orbital. The resonance Raman spectra show that many bonds are only weakly affected by this transition. The room-temperature time-resolved absorption spectra of [M(SnR3)2(CO)2(dmb)] (M = Ru, Os; R = Me, Ph; dmb = 4,4'-dimethyl-2,2'-bipyridine) show the absorptions of the radical anion of dmb, in line with the SBLCT character of the lowest excited state. The excited-state lifetimes at room temperature vary between 0.5 and 3.6 microseconds and are mainly determined by the photolability of the complexes. All complexes are photostable in a glass at 80 K, under which conditions they emit with very long lifetimes. The extremely long emission lifetimes (e.g., tau = 1.1 ms for [Ru(SnPh3)2(CO)2(dmb)]) are about a thousand times longer than those of the 3MLCT states of the [Ru(Cl)(Me)(CO)2(alpha-diimine)] complexes. This is due to the weak distortion of the former complexes in their 3SBLCT states as seen from the very small Stokes shifts. Remarkably, replacement of Ru by Os hardly influences the absorption and emission energies of these complexes; yet the emission lifetime is shortened because of an increase of spin-orbit coupling. The quantum yield of emission at 80 K is 1-5% for these complexes, which is lower than might be expected on the basis of their slow nonradiative decay.  相似文献   

8.
Cui Z  Henderson RA 《Inorganic chemistry》2002,41(16):4158-4166
Kinetic studies, using stopped-flow spectrophotometry, on the reactions of [M(4)(SPh)(10)](2)(-) (M = Fe or Co) with PhS(-) to form [M(SPh)(4)](2)(-) are described, as are the reactions between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) to form [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). The kinetics of the reactions with PhS(-) are consistent with an initial associative substitution mechanism involving attack of PhS(-) at one of the tetrahedral M sites of [M(4)(SPh)(10)](2)(-) to form [M(4)(SPh)(11)](3)(-). Subsequent or concomitant cleavage of a micro-SPh ligand, at the same M, initiates a cascade of rapid reactions which result ultimately in the complete rupture of the cluster and formation of [M(SPh)(4)](2)(-). The kinetics of the reaction between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) indicate an initial dissociative substitution mechanism at low concentrations of [MoS(4)](2)(-), in which rate-limiting dissociation of a terminal thiolate from [M(4)(SPh)(10)](2)(-) produces [M(4)(SPh)(9)](-) and the coordinatively unsaturated M site is rapidly attacked by a sulfido group of [MoS(4)](2)(-). It is proposed that subsequent chelation of the MoS(4) ligand results in cleavage of an M-micro-SPh bond, initiating a cascade of reactions which lead to the ultimate break-up of the cluster and formation of the products, [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). With [Co(4)(SPh)(10)](2)(-), at higher concentrations of [MoS(4)](2)(-), a further substitution pathway is evident which exhibits a second order dependence on the concentration of [MoS(4)](2)(-). The mechanistic picture of cluster disruption which emerges from these studies rationalizes the "all or nothing" reactivity of [M(4)(SPh)(10)](2)(-).  相似文献   

9.
Reaction of the carbonyl Ru3(CO)12 with water leads to the formation of polynuclear hydrides α-H4Ru4(CO)12, α-H2Ru4(CO)13; the corresponding reaction with Os3(CO)12 yields the complexes (H)(OH)Os3(CO)10, H2Os4(CO)13, H4Os4(CO)12, H2Os5(CO)16, H2Os5(CO)15, H2Os6(CO)18 and H2Os7(CO)19C.  相似文献   

10.
Broken-symmetry density functional theory is used to examine the coupling between metal ions in the face-shared bioctahedral complexes M2Cl9(3-), M = Fe, Ru, Os. In the ruthenium and osmium systems, the metal ions have low-spin configurations, and strong coupling results in the formation of a metal-metal sigma bond. In contrast, the iron system contains two weakly coupled high-spin FeIII centers, the different behavior being due to the high spin-polarization energy in the smaller Fe atom. At Fe-Fe separations shorter than 2.4 A, however, an abrupt transition occurs and the ground state becomes very similar to that for the heavier congeners (i.e., strongly coupled low-spin FeIII). The intrinsic link between high-spin/low-spin transitions on the individual metal centers and the onset of metal-metal bond formation is traced to the spin-polarization energy, which plays a central role in both processes.  相似文献   

11.
In this novel motif, scandium atoms define infinite parallel chains of alternate trans-face-sharing cubes and pairs of square antiprisms in which each polyhedron is also centered by an M atom (M = Ru, Os). These chains are further linked into a three-dimensional structure by Sc(Te2Te4/2) octahedra. Physical property measurements show Sc14Ru3Te8 to be metallic and Pauli-paramagnetic, consistent with the results of extended Hückel band structure calculations. Matrix effects are evident in the dimensions within the chains. The major interactions are Sc-M and Sc-Te.  相似文献   

12.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

13.
A homologous series of dinuclear compounds with the bridging ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp) has been prepared and characterized by X-ray crystallographic and spectroscopic methods. [Mo(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x 3CH(3)CN (1) crystallizes in the monoclinic space group P2(1)/c with a = 15.134(5) A, b = 14.301(6) A, c = 19.990(6) A, beta = 108.06(2) degrees, V = 4113(3) A(3), and Z = 4. [Ru(2)(O(2)CCH(3))(2)(pynp)(2)][PF(6)](2) x 2CH(3)OH (2) crystallizes in the monoclinic space group C2/c with a = 14.2228(7) A, b = 20.3204(9) A, c = 14.1022(7) A, beta = 95.144(1) degrees, V = 4059.3(3) A(3), and Z = 4. [Rh(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x C(7)H(8) (3) crystallizes in the monoclinic space group C2/c with a = 13.409(2) A, b = 21.670(3) A, c = 13.726(2) A, beta = 94.865(2) degrees, V = 3973.9(8) A(3), and Z = 4. A minor product, [Rh(2)(O(2)CCH(3))(2)(pynp)(2)(CH(3)CN)(2)][BF(4)][PF(6)] x 2CH(3)CN (4), was isolated from the mother liquor after crystals of 3 had been harvested; this compound crystallizes in the triclinic space group, P1 with a = 12.535(3) A, b = 13.116(3) A, c = 13.785(3) A, alpha = 82.52(3) degrees, beta = 77.70(3) degrees, gamma = 85.76(3) degrees, V = 2193.0(8) A(3), and Z = 2. Compounds 1-3 constitute a convenient series for probing the influence of the electronic configuration on the extent of mixing of the M-M orbitals with the pi system of the pynp ligand. Single point energy calculations performed on 1-3 at the B3LYP level of theory lend insight into the bonding in these compounds and allow for correlations to be made with electronic spectral data. Although purely qualitative in nature, the values for normalized change in orbital energies (NCOE) of the frontier orbitals before and after reduction are in agreement with the observed differences in reduction potentials as determined by cyclic voltammetry.  相似文献   

14.
Voltammetric, photo-physical and photo-electrochemical properties of the Dawson polyoxometalate anions alpha-[S(2)M(18)O(62)](4-) (M = Mo, W) are presented, both in the presence and absence of a series of [Ru(II)L(n)](+/2+) cations [L(n) = (bpy)(3), (bpy)(2)(Im)(2), (bpy)(2)(dpq), (bpy)(2)(box) and (biq)(2)(box)]. Electrochemical processes for both the anion and Ru(II/III) couples were detected in solutions of the salts [Ru(II)L(n)](2)[S(2)M(18)O(62)] in dimethylformamide (0.1 M Bu(4)NPF(6)) by both cyclic and hydrodynamic voltammetries. Responses were also detected when the solid salts were adhered to the surface of a glassy carbon electrode in contact with an electrolyte in which they are insoluble (CH(3)CN; 0.1M Bu(4)NPF(6)). Photolysis experiments were performed on solutions of the salts [R(4)N](4)[S(2)M(18)O(62)] (R = n-butyl or n-hexyl) and [Ru(II)L(n)](2)[S(2)M(18)O(62)] at 355 and 420 nm in dimethylformamide and acetonitrile in the presence and absence of benzyl alcohol (10% v/v). When associated with [Ru(bpy)(3)](2+), the molybdate anion exhibited a large increase in the quantum yield for photo-reduction at 420 nm. The quantum yield for the tungstate analogue was lower but the experiments again provided clear evidence for sensitization of the photo-reduction reaction in the visible spectral region. The origin of this sensitization is ascribed to the new optical transition observed around 480 nm in static ion clusters {[Ru(bpy)(3)][S(2)M(18)O(62)]}(2-) and {[Ru(bpy)(3)](2)[S(2)M(18)O(62)]} present in solution. Measurable photocurrents resulted from irradiation of solutions of the anions with white light in the presence of the electron donor dimethylformamide. Evidence is also presented for possible quencher-fluorophore interactions in the presence of certain [Ru(II)L(n)](+) cations.  相似文献   

15.
As the first examples of homoleptic, sigma-bonded superelectrophilic metal carbonyl cations with tetrafluoroborate [BF(4)](-) as the counter anions three thermally stable salts of the composition [M(CO)(6)][BF(4)](2) (M = Fe, Ru, Os) have been synthesized and extensively characterized by thermochemical, structural, and spectroscopic methods. A common synthetic route, the oxidative carbonylation of either Fe(CO)(5) (XeF(2) as the oxidizer) or M(3)(CO)(12) (M = Ru, Os) (F(2) as the oxidizer) in the conjugate Bronsted-Lewis superacid HF/BF(3), was employed. The thermal behavior of the three salts, studied by differential scanning calorimetry (DSC) and gas-phase IR spectroscopy of the decomposition products, has been compared to that of the corresponding [SbF(6)](-) salts. The molecular structures of [M(CO)(6)][BF(4)](2) (M = Fe, Os) were obtained by single-crystal X-ray diffraction at 100 K. X-ray powder diffraction data for [M(CO)(6)][BF(4)](2) (M = Ru, Os) were obtained between 100 and 300 K in intervals of 50 K. All three salts are isostructural and crystallized in the tetragonal space group I4/m (No. 87). As for the corresponding [M(CO)(6)][SbF(6)](2) salts (M = Fe, Ru, Os), similar unit cell parameters and vibrational fundamentals were also found for the three [BF(4)](-) compounds. For the structurally characterized salts [M(CO)(6)][BF(4)](2) (M = Fe, Os), very similar bond parameters for both cations and anions were found. Hence, the invariance of structural and spectroscopic properties of [M(CO)(6)](2+) cations (M = Fe, Ru, Os) extended from the fluoroantimonates [Sb(2)F(11)](-) and [SbF(6)](-) as counteranions also to [BF(4)](-).  相似文献   

16.
Summary Carbon monoxide reacts with the cationic dinitrosyls [M(NO)2(PPh3)2]+ (M = Rh, Ir) under ambient conditions to produce CO2, N2O and the tricarbonyl cations, (M(CO)3(PPh3)2]+. The cationic tricarbonyls are reconverted into the dinitrosyl reactants on treatment with NO atca. 80°. The Ru(NO)2(PPh3)2 and Os(NO)2(PPh3)2 complexes react similarly with CO but under more vigorous conditions whereas the corresponding dinitrosyls of cobalt and iron do not undergo this reaction under similar conditions. A pentacoordinate dinitrosyl intermediate [M(NO)2(CO)(PPh3)2]n+ is proposed and a mechanism for the catalytic oxidation of CO by NO is presented. Studies of Pt(N2O2)PPh3)2 establish that a dinitrogcn dioxide intermediate, produced by the coupling of two nitrosyl ligands, is reasonable.  相似文献   

17.
Reductive electrocrystallization at a constant current density (11.0–11.5 μA/cm2) of millimolar solutions of [M(bpy)3](PF6)2, where M = Fe, Ru, or Os, and bpy = 2,2′-bipyridine in acetonitrile containing 0.1M Bu4NPF6 results in the formation of dark crystals on the Pt cathode. The crystals grow as long, thin, and shiny needles having a hexagonal cross section of 0.1–0.5 mm in diameter. Combustion microanalyses results are consistent with the composition for [Fe(bpy)3], [Ru(bpy)3], and [Os(bpy)3]. In addition, the chromophores are conserved, as confirmed by recording both the electronic and the 1H-NMR spectra after reoxidation of the electrocrystals in humid air. The spectra are identical to those for authentic samples of [Fe(bpy)3]2+, [Ru(bpy)3]2+, and [Os(bpy)3]2+. A ratio of 2.0 ± 0.1 e?/molecule is observed upon completion of the controlled potential electrolysis of a solution of [M(bpy)3]2+, which results in the precipitation of a dark solid and the almost complete fading of the color of the original solution. Unexpectedly, the crystals do not exhibit an ESR signal. These data indicate the formation of novel materials, crystalline [Fe(bpy)3], [Ru(bpy)3], and [Os(bpy)3].  相似文献   

18.
报导了对配合物(M=Fe,Ru,Os)的量子化学密度泛函(DFT)法研究的结果.在B3LYP/LanL2DZ方法与基组的水平上进行计算,探讨的电子结构特征及相关性质,特别是中心原子对配合物的配位键长、光谱性质、电荷布居及化学稳定性等的影响规律,为该类配合物的合成,为分析光、电、催化作用机理提供理论参考.  相似文献   

19.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

20.
To access the hitherto almost unknown class of clustered transition metal carbonyl cations, the trimetal dodecacarbonyls M3(CO)12 (M = Ru, Os) were reacted with the oxidant Ag+[WCA], but yielded the silver complexes [Ag{M3(CO)12}2]+[WCA] (WCA = [Al(ORF)4], [F{Al(ORF)3}2]; RF = –OC(CF3)3). Addition of further diiodine I2 to increase the redox potential led for M = Ru non-specifically to divalent mixed iodo-RuII-carbonyl cations. With [NO]+, even the N–O bond was cleaved and led to the butterfly carbonyl complex cation [Ru4N(CO)13]+ in low yield. Obviously, ionization of M3(CO)12 with retention of its pseudo-binary composition including only M and CO is difficult and the inorganic reagents did react non-innocently. Yet, the radical cation of the commercially available perhalogenated anthracene derivative 9,10-dichlorooctafluoroanthracene (anthraceneHal) is a straightforward accessible innocent deelectronator with a half-wave potential E1/2 of 1.42 V vs. Fc0/+. It deelectronates M3(CO)12 under a CO atmosphere and leads to the structurally characterized cluster salts [M3(CO)14]2+([WCA])2 including a linear M3 chain. The structural characterization as well as vibrational and NMR spectroscopies indicate the presence of three electronically independent sets of carbonyl ligands, which almost mimic M(CO)5, free CO and even [M(CO)6]2+ in one and the same cation.

Trimeric M3(CO)12 (M = Ru, Os) reacts with typical inorganic oxidants to unwanted side products. Yet, the 9,10-dichlorooctafluoroanthracene radical cation deelectronates these under CO pressure to give the first homotrimetallic [M3(CO)14]2+ salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号