首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel BODIPY-based near-IR emitting probe as a selective and sensitive fluorophore for Hg(II) is synthesized. This versatile BODIPY fluorophore is functionalized for long wavelength emission at the 3 and 5 positions via a condensation reaction in which two dithiodioxomonoaza-based crown-containing phenyl units are conjugated to the BODIPY core as a chelating unit. This designed fluorophore, employing an ICT sensor can be used effectively to detect Hg(II) cations by way of a hypsochromic shift (∼90 nm) in both the absorption and emission spectra.  相似文献   

2.
An efficient water soluble fluorescent Al(3+) receptor, 1-[[(2-furanylmethyl)imino]methyl]-2-naphthol (1-H) was synthesized and characterized by physico-chemical and spectroscopic tools along with single crystal X-ray crystallography. High selectivity and affinity of 1-H towards Al(3+) in HEPES buffer (DMSO/water: 1/100) of pH 7.4 at 25 °C showed it to be suitable for detection of intracellular Al(3+) by fluorescence microscopy. Metal ions, viz. alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)), and transition-metal ions (Ni(2+), Zn(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Cr(3+/6+), Hg(2+)) and Pb(2+), Ag(+) did not interfere. The lowest detection limit for Al(3+) was calculated to be 6.03 × 10(-7) M in 100 mM HEPES buffer (DMSO/water: 1/100). Theoretical calculations have also been included in support of the configuration of the probe-aluminium complex.  相似文献   

3.
A new on-off fluorescent probe 1 for Cu2+ based on Schiff base compound was designed and synthesized by one-step reaction. The single probe 1 exhibited strong green fluorescence emission. A fluorescence quenching effect and faint color change were observed as soon as the Cu2+ was added to the probe system in H2O/EtOH (v/v = 8:2, HEPES buffer, 0.05 M, pH = 7.4) solution. Other common metal cations did not cause the changes in the fluorescence and color of the probe 1. The optical properties were studied by the fluorescence emission and UV–Vis spectra. Meanwhile, the geometry optimizations of probe 1 and the [1-Cu2+] coordination complexes were also carried out by DFT using the Gaussian 09 program, in which the B3LYP function was used. Based on experimental measurement and theoretical analysis, we can know that the combination ratio of the probe and Cu2+ is 2:1 and the limit of detection (LOD) is as low as 5.3 × 10?9 M Besides, the probe 1 was also used to analyze the Cu2+ in living cells.  相似文献   

4.
An imidazole-based ligand has been evaluated for a potential fluorescent Hg(II) sensing probe. In water-acetonitrile solvent system, the ligand exhibits a unique selectivity towards Hg(II), which not only modulates fluorescence intensity but also shifts the emission band. The fluorescence reduction and the emission shift correlate with Hg(II) concentrations.  相似文献   

5.
The synthesis and complexing properties of a calix[4]arene derivate (6) carrying two spirobenzopyran moieties are described. The addition of lanthanide ions resulted in significant UV-vis spectral shifts (68-84 nm) in visible region. It indicates that the synthetic receptor can recognize lanthanide ions by naked eyes over other cations including Na+, K+, Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+. The mechanism of recognition was studied with 1H NMR, UV-vis spectra and emission spectra. The receptor may be applied to sense lanthanide ions.  相似文献   

6.
Zhang JF  Kim S  Han JH  Lee SJ  Pradhan T  Cao QY  Lee SJ  Kang C  Kim JS 《Organic letters》2011,13(19):5294-5297
A new zinc(II) complex with a two-dipicolylamine-substituted 1,8-naphthalimide for recognition of pyrophosphate with ratiometrical fluorescence changes in aqueous solution has been synthesized and characterized. Its biological application to monitor the intracellular pyrophosphate (PPi) was successfully demonstrated by the observation that the fluorescence of 1 was enhanced by the presence of the Zn(2+) ion and was quenched by addition of PPi.  相似文献   

7.
A turn-on chemosensor L1, which exhibits high selectivity and sensitivity toward Hg(2+) over other common metal ions in aqueous media under a physiological pH window via a 1:1 binding mode, had been synthesized and characterized. L1 provides good fluorescent imaging of Hg(2+) in living cells. Particularly, we adopted the "micro computed tomography (MCT)" technology, successfully demonstrating the method of Hg(2+) sensing by L1 in cell lines, also the cell permeability of L1 and its imaging position in the cells.  相似文献   

8.
Zhao Y  Zheng B  Du J  Xiao D  Yang L 《Talanta》2011,85(4):2194-2201
A novel rhodamine-based fluorescent chemosensor (RND) was synthesized that contains two independent fluorophores and acts as a very sensitive, selective and reversible off-on probe for Hg(II). Importantly, this newly developed sensing system exhibited different fluorescent responses toward Hg(II) and Mg(II) at 589 nm and 523 nm, respectively. RND also displayed detectable color change upon treatment with Hg(II). Results from confocal laser scanning microscopy experiments demonstrated that this chemosensor is cell permeable and can be used as a fluorescent probe for monitoring Hg(II) or Mg(II) in living cells. This probe can also indirectly detect glutathione (GSH) and cysteine (Cys) with good linear relationships.  相似文献   

9.
Wang H  Li Y  Xu S  Li Y  Zhou C  Fei X  Sun L  Zhang C  Li Y  Yang Q  Xu X 《Organic & biomolecular chemistry》2011,9(8):2850-2855
A novel rhodamine-based highly sensitive and selective colorimetric off-on fluorescent chemosensor for Hg(2+) ions is designed and prepared by using the well-known thiospirolactam rhodamine chromophore and furfural hydrazone as signal-reporting groups. The photophysical characterization and Hg(2+)-binding properties of sensor RS1 in neutral N, N-dimethylformamide (DMF) aqueous solution are also investigated. The signal change of the chemosensor is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. The response of the chemosensor for Hg(2+) ions is instantaneous and reversible. And it successfully exhibits a remarkably "turn on" response toward Hg(2+) over other metal ions (even those that exist in high concentration). Moreover, this sensor is applied for in vivo imaging in Rat Schwann cells to confirm that RS1 can be used as a fluorescent probe for monitoring Hg(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.  相似文献   

10.
The sensing properties of a boron dipyrromethene derivative 1 containing a N,N-(dimethylamino)styryl group at its α-position and an aniline moiety at meso-position were investigated by steady-state UV-vis absorption and fluorescence spectroscopy, which were found to exhibit wavelength ratiometric and large fluorescence enhancement in the presence of Al3+ with specific selectivity over other metal ions in aqueous media. Furthermore, confocal fluorescence microscopy experiments demonstrated that 1 could be used as a fluorescent probe for Al3+ in living cells.  相似文献   

11.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

12.
Mercury ions are highly toxic and can accumulate along food chains in water, soil, crops and animals. Effective detection of mercury ions in various media is of great significance for maintaining the ecological environment and protecting people’s health. In this work, a mercury ions specific fluorescent probe was developed by a simple one-step reaction of commercial substrates of 4-chloro-7-nitro-2,1,3-benzoxadiazole and 1-(2-aminoethyl)-4-methylpiperazine. Investigation on sensing behavior showed that this probe had high sensitivity and selectivity towards mercury ions. Furthermore, this probe could be used as a tool to track the level of mercury ions in living system. In living cells, the probe with green emission emitted a bright red fluorescence when it was bound to mercury ions. In Arabidopsis thaliana, similar red emission could be detected from the root tip and stalk when A. thaliana was grown in culture medium containing mercury ions. The imaging in zebrafish showed that mercury ions were mainly concentrated in the stomach and head of zebrafish. Especially, this probe could be applied in quantitative analysis of mercury ions in tap water, green tea, sea shrimp and soil. This work provided a practical tool for the detection of mercury ions in living systems and quantitative analysis in real samples.  相似文献   

13.
A novel fluorescent probe for the copper(II) ion in mixed aqueous media, based on fluorescence quenching mechanism with noticeable color change from light to dark yellow, was designed and synthesized. It also exhibited high selectivity for acetate in acetonitrile over other common anions in the near infrared region (NIR) accompanied with exciting color changes from light yellow to pink. Hence sensor 1 ascertains its dual chemosensing ability toward Cu(II) and acetate ions as evidenced by competitive experiments.  相似文献   

14.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

15.
A novel water soluble Hg(2+)-selective chemosensor 1 with hemicyanine as fluorescent reporting group and NO(2)Se(2) chelating unit as ion binding site was reported. Chemosensor 1 shows a specific Hg(2+) selectivity and discrimination between Hg(2+) and chemically similar ions in conjunction with a visible colorimetric change from red to colorless, potentially leading to both "naked-eye" and fluorometric detection of Hg(2+) cations.  相似文献   

16.
A novel fluorescent Hg~(2 ) chemosensor based on dithia-dioxa-monoaza crown ether was synthesized in four steps from inexpensive starting materials.This new sensor exhibited very strong fluorescence response to Hg~(2 ) (F_(Hg~(2 ))/F_(free)>130) and it was highly selective to Hg~(2 ) over the other metal ions by more than 45-fold.  相似文献   

17.
A rhodamine-cyclen conjugate (1) behaves as a highly sensitive and selective fluorescent chemosensor for Hg(2+). The high emission selectivity is due to the formation of 1-Hg(2+) 1:2 complex leading to spirocycle opening of 1.  相似文献   

18.
A new 2,6-bis(5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-4-methylphenol (1) serves as a highly selective and sensitive fluorescent probe for Zn(2+) in a HEPES buffer (50 mM, DMSO:water = 1:9 (v/v), pH = 7.2) at 25 °C. The increase in fluorescence in the presence of Zn(2+) is accounted for by the formation of dinuclear Zn(2+) complex [Zn(2)(C(35)H(25)N(6)O)(OH)(NO(3))(2)(H(2)O)] (2), characterized by X-ray crystallography. The fluorescence quantum yield of the chemosensor 1 is only 0.019, and it increases more than 12-fold (0.237) in the presence of 2 equiv of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to be either unchanged or weakened. By incubation of cultured living cells (A375 and HT-29) with the chemosensor 1, intracellular Zn(2+) concentrations could be monitored through selective fluorescence chemosensing.  相似文献   

19.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

20.
A simple but highly selective colorimetric and ratiometric fluorescent chemodosimeter was designed and synthesized to detect fluoride ions (F(-)) in aqueous solution and living cells by virtue of the strong affinity of F(-) toward silicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号