首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Molecular Complex Tris(μ4‐disulfido)‐hexa‐μ2‐chloro‐hexapalladium [Pd6(S2)3Cl6] A new hexameric form of PdSCl have been obtained by reaction of Pd metal with sulfur in SCl2 solution at 180 °C in a closed silica ampoule. The monoclinic crystal structure of β‐PdSCl (space group P21 /m; a = 7.766(2)Å; b = 11.941(2)Å; c = 9.136(3)Å; β = 110.57(3)°; Z =12) is built up by clusters [Pd6(S2)3Cl6] with nearly D3h symmetry. In the molecular units six Pd atoms form a trigonal prism with three S2 disulfide groups in front of the side faces. The fourfold coordination of the Pd atoms is completed by 6 Cl atoms forming μ2 bridges.  相似文献   

2.
Caesiumchloropalladate(II)‐hydrates – Two New Compounds with Condensed [Pd2Cl6] Groups We were able to synthesize two caesiumchloropalladate(II)‐hydrates in the CsCl/PdCl2/H2O system by hydrothermal methods. Both compounds show combination of monomeric and dimeric Pd–Cl groups. We characterized the crystal structures by single‐crystal X‐ray diffraction. Cs6Pd5Cl16 · 2 H2O ( I ) crystallizes triclinic in space group type P1 (Nr. 2) with a = 8.972(1) Å, b = 11.359(1) Å, c = 18.168(1) Å, α = 83.61(1)°, β = 76.98(1)°, γ = 76.39(1)° and Z = 2, Cs12Pd9Cl30 · 2 H2O ( II ) monoclinic, space group type C2/m (No. 12) with a = 19.952(1) Å, b = 14.428(1) Å, c = 14.411(1) Å, β = 125.29(1)°, and Z = 2.  相似文献   

3.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

4.
Er3Pd7P4 — Crystal Structure Determination and Extended Hückel Calculations Er3Pd7P4 was prepared by heating the elements (1050°C) and investigated by means of single-crystal X-ray methods. The compound crystallizes in a new structure (C2/m; a = 15.180(3) Å, b = 3.955(1) Å, c = 9.320(1) Å, β = 125,65(1)°; Z = 2) with a three-dimensional framework of Pd and P atoms and with Er atoms in the holes. The Pd atoms are surrounded tetrahedrally, trigonally or linearly by P atoms, which are coordinated by nine metal atoms in the form of a tricapped trigonal prism. Therefore the atomic arrangement of Er3Pd7P4 is related to the structures of ternary transition metal phosphides with a metal: phosphorus ratio of 2:1. Band calculations using the Extended Hückel method show strong covalent Pd? P bonds and weak bonding interactions between Pd atoms with Pd? Pd distances shorter than 2.9 Å.  相似文献   

5.
Ca3Pd4Bi8: Crystal and Electronic Structure Ca3Pd4Bi8 (a = 10.814(4), b = 17.050(6), c = 4.149(4) Å) was prepared by heating the elements at 900 °C and investigated by single crystal X‐ray methods. The compound crystallizes in a new structure type (Pbam; Z = 2). Six Bi atoms form distorted trigonal prisms around the Pd atoms. The polyhedra share common corners, edges or faces building up a three dimensional Pd, Bi network, whose holes are occupied by Ca atoms. A special feature is a distorted octahedron of four Pd and two Bi atoms connected via short homonuclear bonds. The metallic behaviour of the compound derived from the bond lengths is discussed by LMTO band structure calculations.  相似文献   

6.
It has been shown for the first time that the reaction of bi-valent tin acetyl-acetonate with palladium carbonylphosphine clusters, Pd4(CO)5(PPh3)4 (I), Pd4(CO)5(PEt3)4 (II) and Pd3(CO)3(PPh3)4 (III), results in the formation of heterometal pentanuclear clusters of general formula Pd3Sn2(acac)4(CO)2(PR3)3; R  Ph (IV), Et (V). X-ray analysis of Pd3Sn2(acac)4(CO)2(PPh3)3 at 20°C (λ(Mo), 4396 reflections, space group P21/n, Z = 4, R = 0.037) shows that IV in the form of the crystalline hydrate, Pd3Sn2(acac)4(CO)2(PPh3)3 · χH2O (χ ∼ 1), contains a distorted “propeller”-shaped Pd3Sn2 metal frame with PdSn distances of 2.679–2.721(1) Å; two short PdPd bonds, 2.708 and 2.720(1) Å, bridged by μ2-CO ligands, and an elongated central Pd(1)Pd(2) bond of 2.798 Å. Sn atoms have distorted octahedral coordination, the dihedral angles formed by Pd3 moieties and two Pd2Sn triangles are 127.6 and 106.5°; and the angle between Pd2Sn moieties is 126.0°.  相似文献   

7.
The dichloromethane solvates of the isomers tetrakis(μ‐1,3‐benzothiazole‐2‐thiolato)‐κ4N:S4S:N‐dipalladium(II)(PdPd), (I), and tetrakis(μ‐1,3‐benzothiazole‐2‐thiolato)‐κ6N:S2S:N‐dipalladium(II)(PdPd), (II), both [Pd2(C7H4NS2)4]·CH2Cl2, have been synthesized in the presence of (o‐isopropylphenyl)diphenylphosphane and (o‐methylphenyl)diphenylphosphane. Both isomers form a lantern‐type structure, where isomer (I) displays a regular and symmetric coordination and isomer (II) an asymmetric and distorted structure. In (I), sitting on an centre of inversion, two 1,3‐benzothiazole‐2‐thiolate units are bonded by a Pd—N bond to one Pd atom and by a Pd—S bond to the other Pd atom, and the other two benzothiazolethiolate units are bonded to the same Pd atoms by, respectively, a Pd—S and a Pd—N bond. In (II), three benzothiazolethiolate units are bonded by a Pd—N bond to one Pd atom and by a Pd—S bond to the other Pd atom, and the fourth benzothiazolethiolate unit is bonded to the same Pd atoms by, respectively, a Pd—S bond and a Pd—N bond.  相似文献   

8.
Palladium Pnictides of Zirconium and Hafnium with a Metal : Nonmetal Ratio of 2 : 1 The following compounds were prepared by heating the elements in the range of 800°–1100 °C and characterized by means of X‐ray single crystal methods: Zr5Pd9P7 (a = 3.815(1), b = 26.319(5), c = 6.511(1) Å) and Hf5Pd9P7 (a = 3.776(1), b = 26.382(7), c = 6.500(3) Å) are isotypic and crystallize in a new structure type (Amm2; Z = 2). This also applies to ZrPdAs (a = 3.887(1), b = 19.288(6), c = 6.690(2) Å; Pmmn; Z = 10), while ZrPdSb (a = 6.814(1), b = 4.289(1), c = 7.870(2) Å) forms a TiNiSi analogous structure (Pnma; Z = 4). Common feature of all structures is the tetrahedral environment of Pd by X atoms (X: P, As, Sb). The linking of the tetrahedra leads to a PdX framework with holes, in which the Zr and Hf atoms respectively are located. The non‐metal atoms have trigonal prismatic metal coordination with three additional metal atoms outside the rectangular faces of the prisms. This XMe9 polyhedron (Me = metal) is typical for the large family of ternary pnictides with a metal : non‐metal ratio of 2 : 1.  相似文献   

9.
Mixed Valence Molecular Platinum Iodide Amin Complexes: The Trinuclear Pt3I8(NHEt2)2 with Edgeshared Planar and Octahedral Building Groups PtI2 · NHEt2 was prepared by reaction of K2PtCl4 with KI and NEt2H in aqueous solution. The crystal structure of the monoclinic compound (a = 20.558(4) Å; b = 7.254(1) Å; c = 13.790(3) Å; β = 100.47(3)°; space group C2/c) consists of binuclear molecules of [{Pt(NH(Et)2)I}2(μ-I)2]. On oxidation of this Pt(II) compound by I2 in CH2Cl2 mixtures of the trinuclear mixed-valence compound Pt3I8(NHEt2)2 and of the binuclear PtIV complex [{Pt(NHEt2)I3}2(μ-I)2] were obtained. The monoclinic crystal structure of Pt3I8(NHEt2)2 (a = 20.278(4) Å; b = 10.627(2) Å, c = 14.232(3) Å; β = 115.66(3)° space group C2/c) is built up by trimeric units of two planar PtIII3(NHEt2) groups sharing edges with a central PtIVI6-octhedron.  相似文献   

10.
The three (O‐methyl)‐p‐ethoxyphenyldithiophosphonato triphenylphosphine complexes of copper, silver and gold, [(Ph3P)nM{S2P(OMe)C6H4OEt‐p}] (M = Cu, n = 2; M = Ag, Au, n = 1) investigated structurally by X‐ray diffraction exhibit remarkable structural differences. The copper compound is a four‐coordinate chelate monomer with Cu–S 2.4417(6) and 2.5048(6) Å; P–Cu–S 104.24(2)–114.01(2)°; Cu–S–P 82.49(3)° and 80.85(2)°. The silver compound is a cyclic dimer with bridging dithiophosphonato ligands and three‐coordinate silver atoms [Ag–S 2.5371(5) and 2.6867(5) Å; P–Ag–S 122.88(2)° and 122.17(2)°; Ag–S–P 89.32(2)° and 103.56(2)°]. The gold compound is monomeric with linear dicoordinate gold [Au–S 2.3218(6) Å; P–Au–S 177.72(2)°, Au–S–P 100.97(3)°].  相似文献   

11.
The water‐insoluble title compound, octakis(μ‐acetato‐κ2O:O)­octakis(μ‐nitro­so‐κ2N:O)­octapalladium(II), [Pd8(CH3COO)8(NO)8], was precipitated as a yellow powder from a solution of palladium nitrate in nitric acid by adding acetic acid. Ab initio crystal structure determination was carried out using X‐ray powder diffraction techniques. Patterson and Fourier syntheses were used for atom locations, and the Rietveld technique was used for the final structure refinement. The crystal structure is of a molecular type. The skeleton of the [Pd8(CH3COO)8(NO)8] mol­ecule is con­structed as a tetragonal prism with Pd atoms at the vertices. The eight NO groups are in bridging positions along the horizontal edges of the prism. The N and O atoms of each nitro­so group coordinate two different Pd atoms. The vertical edges present Pd⋯Pd contacts with a short distance of 2.865 (1) Å. These Pd atoms are bridged by a pair of acetate groups in a cis orientation with respect to each other. The complex has crystallographically imposed 4/m symmetry; all C atoms of the acetate groups are on mirror planes. The unique Pd atom lies in a general position and has square‐planar coordination, consisting of three O and one N atom.  相似文献   

12.
Homo- and Heterodinuclear α-Pyridonate-bridged Platinum and Palladium Complexes with Bis(N-methylimidazol-2-yl)ketone (BMIK). Crystal Structures of [(BMIK)Pt(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O, [(BMIK)Pd(α-pyridonate)2Pd(BMIK)](NO3)2 · 4H2O, and [(BMIK)Pd(α-pyridonate)2Pt/Pd(BMIK)](NO3)2 · 4H2O The isotypic dinuclear complexes [(BMIK)Pt(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O ( 1 ) (P1 ; a = 12.197(5) Å, b = 12.505(5) Å, c = 12.866(5) Å, α = 88.17(3)°, β = 73.55(3)°, γ = 69.84(3)°; Z = 2) and [(BMIK)Pd(α-pyridonate)2Pd(BMIK)](NO3)2 · 4H2O ( 2 ) (a = 12.408(3) Å, b = 12.660(3) Å, c = 12.913(3) Å, α = 89.55(3)°, β = 74.59(2)°, γ = 68.68(2)°) were prepared by reaction of [Pt(BMIK)(H2O)2](NO3)2 or [Pd(BMIK)(H2O)2](NO3)2 with α-pyridone in aqueous solutions at 40°C and were isolated as red air-stable crystals (BMIK = bis(N-methylimidazol-2-yl)ketone). For the synthesis of mixed crystals of 2 with the heterometal complex [(BMIK)Pd(α-pyridonate)2Pt(BMIK)](NO3)2 · 4H2O ( 3 ) (a = 12.430(4) Å, b = 12.648(3) Å, c = 12.907(4) Å, α = 89.64(2)°, β = 74.57(2)°, γ = 68.65(2)°) α-pyridone was reacted with [Pd(BMIK)(H2O)2](NO3)2 in a molar ratio of 2 : 1 followed by addition of [Pt(BMIK)(H2O)2](NO3)2. The dinuclear cations consist of two M(BMIK) moieties (M = Pt, Pd) bridged by the N- and O-atoms of α-pyridonate, forcing the heterocyclic ring into head-head-orientation. Within the dinuclear cation, the two metal atoms are between 2.840 Å and 2.860 Å apart. The intermolecular distances are between 4.762 Å and 4.837 Å. The coordination geometry of both metal atoms is square-planar with the metal atoms being diplaced slightly from their respective coordination planes toward each other. 1H and 195Pt NMR spectra are reported for the complexes.  相似文献   

13.
Synthesis and Crystal Structure of the Complexes [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 and [(n‐Bu)4N]2[Pd3Cl8] The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2 PdCl2] ( 1 ) is obtained in THF by the reaction of PdCl2(NCC6H5)2 with [(n‐Bu)4N][ReNCl4] in the molar ration 1:2. It forms orange crystals with the composition 1· THF crystallizing in the monoclinic space group C2/c with a = 2973.3(2); b = 1486.63(7); c = 1662.67(8)pm; β = 120.036(5)° and Z = 4. If the reaction is carried out with PdCl2 instead of PdCl2(NCC6H5)2, orange crystals of hitherto unknown [(n‐Bu)4N]2[Pd3Cl8] ( 3 ) are obtained besides some crystals of 1· THF. 3 crystallizes with the space group P1¯ and a = 1141.50(8), b = 1401.2(1), c = 1665.9(1)pm, α = 67.529(8)°, β = 81.960(9)°, γ = 66.813(8)° and Z = 2. In the centrosymmetric complex anion [{(THF)Cl4Re≡N}2PdCl2]2— a linear PdCl2 moiety is connected in trans arrangement with two complex fragments [(THF)Cl4Re≡N] via asymmetric nitrido bridges Re≡N‐Pd. For Pd(II) thereby results a square‐planar coordination PdCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 163.8(7)pm and Pd‐N = 194.1(7)pm. The crystal structure of 3 contains two symmetry independent, planar complexes [Pd3Cl8]2— with the symmetry 1¯, in which the Pd atoms are connected by slightly asymmetric chloro bridges. By the reaction of equimolar amounts of [Ph4P][ReNCl4] and PdCl2(NCC6H5)2 in THF brown crystals of the heterometallic complex, [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 ( 2 ) result. 2 crystallizes in the monoclinic space group P21/n with a = 979.55(9); b = 2221.5(1); c = 1523.1(2)pm; β = 100.33(1)° and Z = 2. In the central unit ClPd(μ‐Cl)2PdCl of the centrosymmetric anionic complex [(THF)Cl4Re≡N‐PdCl(μ‐Cl)]22— the coordination of the Pd atoms is completed by two nitrido bridges Re≡N‐Pd to nitrido complex fragments [(THF)Cl4Re≡N] forming a square‐planar arrangement for Pd(II). The distances in the linear nitrido bridges are Re‐N = 163.8(9)pm and Pd‐N = 191.5(9)pm.  相似文献   

14.
Complex [CoCl(L)]2(μ-Cl)2 (L = 8-(2-butylthioethyl)oxyquinoline) is studied by X-ray diffraction analysis. The empirical formula of the compound is C30H34Cl4Co2N2O2S2, the crystals are monoclinic, a = 9.9382(13) Å, b = 11.9097(8) Å, c = 14.5715(11) Å, β = 102.511(9)°, Z = 2, space group P21/c. The complex is dimeric with bridging chlorine atoms, and the heterocyclic ligand L is tridentate-cyclic.  相似文献   

15.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

16.
The title compound, cis‐[Pd2Cl3(C7H7S)(C6H15P)2], has bridging chloro and aryl­thiol­ato groups, with the phosphines being trans to the bridging chloro group. The four‐membered metallocyclic Pd2ClS ring is unexpectedly non‐planar, with a dihedral angle of 133.8 (1)° between the PdCl2SP coordination planes. Principal dimensions include Pd—Clt 2.316 (3) and 2.329 (3), Pd—Clb 2.442 (3) and 2.432 (3), Pd—S 2.280 (3) and 2.282 (3), and Pd—P 2.233 (3) and 2.236 (3) Å (where Clt and Clb are terminal and bridging chloro ligands, respectively).  相似文献   

17.
A neutral complex of palladium(II) with 2,9-dimethyl-1,10-phenanthroline [Pd(2,9-Me2-phen)Cl2] (goldish orange colored) is examined by single crystal X-ray diffraction. The crystals of [Pd(2,9-Me2-phen)Cl2] are monoclinic and belong to the space group P21/n (a = 11.8670(7) Å, b = 7.8195(5) Å, c = 14.2418(9) Å, β = 92.5450(10)°, Z = 4, V = 1320.25 Å3, R = 0.0289). The complex [Pd(2,9-Me2-phen)Cl2] exhibits a strong distortion of the usual square-planar geometry with a deviation of the central Pd2+ ion and two chloride acido-ligands from the plane of coordinated 2,9-dimethyl-1,10-phenanthroline. The lengths of two Pd-N bonds are slightly different and are 2.058 Å and 2.067 Å, the lengths of the Pd-Cl bonds are equal and are 2.285 Å. 2,9-Me2-phen itself also suffers some distortion of the planar geometry resulting in the boat conformation of the molecule. The crystal structure of the [Pd(2,9-Me2-phen)Cl2] complex is characterized by the presence of π-π stacked dimers arranged in infinite tilted stacks.  相似文献   

18.
In the title complex, [PdCl2(C12H22S3)]·0.8CH3CN, a potentially tridentate thioether ligand coordinates in a cis‐bidentate manner to yield a square‐planar environment for the PdII cation [mean deviation of the Pd from the Cl2S2 plane = 0.0406 (7) Å]. Each square‐planar entity packs in an inverse face‐to‐face manner, giving pairs with plane‐to‐plane separations of 3.6225 (12) Å off‐set by 1.1263 (19) Å, with a Pd...Pd separation of 3.8551 (8) Å. A partial acetonitrile solvent molecule is present. The occupancy of this molecule was allowed to refine, and converged to 0.794 (10). The synthesis of the previously unreported 3,6,9‐trithiabicyclo[9.3.1]pentadecane ligand is also outlined.  相似文献   

19.
Single crystals of two new mercury thiohalides of the composition Hg3S2Cl2? xBrx(x = 0.5) have been grown from gas phase and studied by X-ray crystallography. Structure refinement for monoclinic (I) and cubic (II) phases (I: a = 16.841(2) Å, b = 9.128(2) Å, c = 9.435(4) Å; β = 90.080(10)°, V = 1450.3(7) Å3, space group C2/m, Z = 8, R = 0.0528; II: a = 18.006(2) Å, V = 5837.8(11) Å3, space group \(Pm\bar 3n\), Z = 32, R = 0.0503) clearly shows that they are polymorphs of the same composition Hg3S2Cl1.5Br0.5. The monoclinic modification I is similar to the synthetic phases γ-Hg3S2Cl2, β-Hg3S2Br2, Hg3Se2Br2 and to the analogue of radtkeite mineral, Hg3S2ClI. The modification II is isostructural to the synthetic β-Hg3S2Cl2. In both structures, each S atom coordinates three Hg atoms with the formation of pyramidal SHg3 units (Hg-S 2.37–2.48 Å; HgSHg 93.1–97.5 ). The SHg3 units are linked through Hg vertices into corrugated layers [Hg12S8]∞∞ (I) and isolated cubic groups [Hg12S8] (II). Similarly to other mercury chalcohalides, the crystal structures are basically determined by the halogen atoms which form a cubic sublattice incorporating the Hg-S moieties.  相似文献   

20.
The structures of the Pd4(SBu)4(OAc)4 (I) and Pd6 (SBu)12 (II) palladium clusters are determined by the X-ray diffraction method. For cluster I: a = 8.650(2), b = 12.314(2), c = 17.659(4) Å, α = 78.03(3)°, β = 86.71(2)°, γ = 78.13(3)°, V = 1800.8(7) Å3, ρcalcd = 1.878 g/cm3, space group P \(\bar 1\), Z = 4, N = 3403, R = 0.0468; for structure II: a = 10.748(2), b = 12.840(3), c = 15.233(3) Å, α = 65.31(3)°, β = 70.10(3)°, γ = 72.91(3)°, V = 1767.4(6) Å3, ρ calcd = 1.605 g/cm3, space group P \(\bar 1\), Z = 1, N = 3498, R = 0.0729. In cluster I, four Pd atoms form a planar cycle. The neighboring Pd atoms are bound by two acetate or two mercaptide bridges (Pd…Pd 2.95–3.23 Å, Pd…Pd angles 87.15°–92.85°). In cluster II, the Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.09–3.14 Å, the PdPdPd angles being 118.95°–120.80°. The Pd atoms are linked in pairs by two mercaptide bridges. The formation of clusters I and II in solution is proved by IR spectroscopy and calorimetry. Analogous clusters are formed in solution upon the reaction of palladium(II) diacetate with thiophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号