首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
A fractional step scheme with modified characteristic finite differences running in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of difference operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in l 2 norm is displayed to complete the convergence analysis of the numerical algorithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.  相似文献   

2.
In this paper.variable operator and its product with shifting operator are studied.The product of power series of shifting operator with variable coefficient is defined andits convergence is proved under Mikusinski’s sequence convergence.After turning ageneral variable coefficient linear difference equation of order n into a set of operatorequations.we can obtain the solutions of the general n-th order variable coefficientlinear difference equation.  相似文献   

3.
A new method to admit large Courant numbers in the numerical simulation of multiphase flow is presented. The governing equations are discretized in time using an adaptive θ‐method. However, the use of implicit discretizations does not guarantee convergence of the nonlinear solver for large Courant numbers. In this work, a double‐fixed point iteration method with backtracking is presented, which improves both convergence and convergence rate. Moreover, acceleration techniques are presented to yield a more robust nonlinear solver with increased effective convergence rate. The new method reduces the computational effort by strengthening the coupling between saturation and velocity, obtaining an efficient backtracking parameter, using a modified version of Anderson's acceleration and adding vanishing artificial diffusion. © 2016 The Authors. International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.  相似文献   

4.
This paper presents an approach for determining the linear stability of steady states of partial differential equations (PDEs) on massively parallel computers. Linearizing the transient behavior around a steady state solution leads to an eigenvalue problem. The eigenvalues with the largest real part are calculated using Arnoldi's iteration driven by a novel implementation of the Cayley transformation. The Cayley transformation requires the solution of a linear system at each Arnoldi iteration. This is done iteratively so that the algorithm scales with problem size. A representative model problem of three‐dimensional incompressible flow and heat transfer in a rotating disk reactor is used to analyze the effect of algorithmic parameters on the performance of the eigenvalue algorithm. Successful calculations of leading eigenvalues for matrix systems of order up to 4 million were performed, identifying the critical Grashof number for a Hopf bifurcation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42 :57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper Roe's flux-difference splitting is applied for the solution of Reynolds-averaged Navier-Stokes equations. Turbulence is modelled using a low-Reynolds number form of the k-? tubulence model. The coupling between the turbulence kinetic energy equation and the inviscid part of the flow equations is taken into account. The equations are solved with a diagonally dominant alternating direction implicit (DDADI) factorized implicit time integration method. A multigrid algorithm is used to accelerate the convergence. To improve the stability some modifications are needed in comparison with the application of an algebraic turbulence model. The developed method is applied to three different test cases. These cases show the efficiency of the algorithm, but the results are only marginally better than those obtained with algebraic models.  相似文献   

7.
The dynamics of a mixture of impurities in a gas can be represented by a system of linear Boltzmann equations for hard spheres. We assume that the background is in thermodynamic equilibrium and that the polluting particles are sufficiently few (in comparison with the background molecules) to admit that there are no collisions among couples of them. In order to derive non‐trivial hydrodynamic models, we close the Euler system around local Maxwellian's which are not equilibrium states. The kinetic model is solved by using a Monte Carlo method, the hydrodynamic one by implicit–explicit Runge–Kutta schemes with weighted essentially non‐oscillatory reconstruction (J. Sci. Comput. 2005; 25 (1–2):129–155). Several numerical tests are then computed in order to compare the results obtained with the kinetic and the hydrodynamic models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
New implicit finite difference schemes for solving the time-dependent incompressible Navier-Stokes equations using primitive variables and non-staggered grids are presented in this paper. A priori estimates for the discrete solution of the methods are obtained. Employing the operator approach, some requirements on the difference operators of the scheme are formulated in order to derive a scheme which is essentially consistent with the initial differential equations. The operators of the scheme inherit the fundamental properties of the corresponding differential operators and this allows a priori estimates for the discrete solution to be obtained. The estimate is similar to the corresponding one for the solution of the differential problem and guarantees boundedness of the solution. To derive the consistent scheme, special approximations for convective terms and div and grad operators are employed. Two variants of time discretization by the operator-splitting technique are considered and compared. It is shown that the derived scheme has a very weak restriction on the time step size. A lid-driven cavity flow has been predicted to examine the stability and accuracy of the schemes for Reynolds number up to 3200 on the sequence of grids with 21 × 21, 41 × 41, 81 × 81 and 161 × 161 grid points.  相似文献   

9.
This paper proceeds the papers [3] [4], we make use of the idea of the variable number operators and some concepts and conclusions of the shifting operators series with variable coefficients in the operational field of Mikusinski, it is devoted to the solution of the general three-order linear difference equation with variable coefficients, and it is also devoted to the better solution formula for the some special three-order linear difference equations with variable coefficients: in addition, we try to provide the idea and method for realizing solution of the more than three-order linear difference equation with variable coefficients. Project Supported by the Science Foundation of Anhui Province  相似文献   

10.
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered.This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2),which can still maintain the asymptotically optimal accuracy.It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution,which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence,the two-level stabilized finite element method can save a large amount of computational time.Moreover,numerical tests confirm the theoretical results of the present method.  相似文献   

11.
The implicit lower–upper symmetric Gauss–Seidel (LU-SGS) solver is combined with the line-implicit technique to improve convergence on the very anisotropic grids necessary for resolving the boundary layers. The computational fluid dynamics code used is Edge, a Navier–Stokes flow solver for unstructured grids based on a dual grid and edge-based formulation. Multigrid acceleration is applied with the intention to accelerate the convergence to steady state. LU-SGS works in parallel and gives better linear scaling with respect to the number of processors, than the explicit scheme. The ordering techniques investigated have shown that node numbering does influence the convergence and that the orderings from Delaunay and advancing front generation were among the best tested. 2D Reynolds-averaged Navier–Stokes computations have clearly shown the strong efficiency of our novel approach line-implicit LU-SGS which is four times faster than implicit LU-SGS and line-implicit Runge–Kutta. Implicit LU-SGS for Euler and line-implicit LU-SGS for Reynolds-averaged Navier–Stokes are at least twice faster than explicit and line-implicit Runge–Kutta, respectively, for 2D and 3D cases. For 3D Reynolds-averaged Navier–Stokes, multigrid did not accelerate the convergence and therefore may not be needed.  相似文献   

12.
The incompressible Navier–Stokes equations are solved by an implicit pressure correction method on Cartesian meshes with local refinement. A simple and stable ghost cell method is developed to treat the boundary condition for the immersed bodies in the flow field. Multigrid methods are developed for both velocity and pressure correction to enhance the stability and convergence of the solution process. It is shown that the spatial accuracy of the method is second order in L2 norm for both velocity and pressure. Various steady and unsteady flows over a 2D circular cylinder and a 3D sphere are computed to validate the present method. The capability of the present method to treat a moving body is also demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
We present an implementation of Hysing's (Int. J. Numer. Meth. Fluids 2006; 51 :659–672) semi‐implicit method for treating surface tension, for finite volume models of interfacial flows. Using this method, the surface tension timestep restriction, which is often very stringent, can be exceeded by at least a factor of 5 without destabilizing the solution. The surface tension force in this method consists of an explicit part, which is the regular continuum surface force, and an implicit part which represents the diffusion of velocities induced by surface tension on fluids interfaces. The surface tension force is applied to the velocity field by solving a system of equations iteratively. Since the equations are solved only near interfaces, the computational time spent on the iterative procedure is insignificant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper discusses the influence of the stabilization parameter on the convergence factor of various iterative methods for the solution of the Stokes problem discretized by the so-called locally stabilized Q1-P0 finite element. Our objective is to point out optimal parameters which ensure rapid convergence. The first part of the paper is concerned with the dual formulation of the problem. It gives the theoretical precision and practical developments of our stabilized context Uzawa-type algorithm. We assert that the convergence factor of such a method is majored independently of the mesh size by a function of the stabilization parameter. Moreover, we point out that there exists an optimal value of this parameter that minimizes this upper bound. This gives a theoretical justification of pre-existing numerical results. We show that the optimal parameter can be determined a priori. This is a key point when the method has to be implemented. Finally, we base an interpretation of the iterated penalty method numerical behaviour on some theoretical results about the minimum eigenvalue of the stabilized dual operator. This algorithm involves a penalty parameter and a stabilization parameter and we discuss a strategy for choosing optimal parameters. The mixed formulation of the problem is dealt with in the second part of the paper, which proposes several preconditioned conjugate-gradient-type methods. The indefinite character of the problem makes it intrinsically hard. However, if one chooses a suitable preconditioner, this difficulty is overcome, since the preconditioned operator becomes positive definite. We study the eigenvalue spectrum of the preconditioned operator and thereby the convergence factor of the algorithm. In contrast with the two previous formulations, we show that this convergence factor is majored independently of the stabilization parameter. More precisely, we point out convergence factors comparable with those obtained for Poisson-type problems. Finally, we present a variant of the latter method which uses our so-called macroblock-type preconditioner. A comparison with the simple case of diagonal preconditioning is addressed and the improved performance of the macroblock-type preconditioner is evidenced. Various 2D numerical experiments are given to corroborate the theories presented herein.  相似文献   

15.
The convergence and accuracy characteristics of the preconditioned incompressible Euler and Navier–Stokes equations are studied. An object-oriented C++ numerical code has been developed for solving the inviscid and viscous, steady, incompressible flows problems. The code is based on the cell-centred finite volume method. In this scheme, two-dimensional incompressible Euler and Navier–Stokes equations are modified by a robust artificial compressibility (AC) and a local preconditioning matrix of pressure-sensor type. The preconditioned equations are solved with the Jameson's numerical approach, i.e. artificial dissipation and artificial viscosity terms under the form of a fourth- and second-order derivative, respectively. An explicit four-stage Runge–Kutta integration algorithm is applied to obtain the steady-state condition. The computed results include the steady-state solution of flow past the NACA-hydrofoils and a circular cylinder in free stream, for which the numerical results are compared with numerical works of other researchers. Good agreement is observed. The effects of AC parameter, artificial viscosity and dissipation factor, and local preconditioning coefficient on convergence rate and solution accuracy are tested by computing flow over the NACA0012 hydrofoil. In addition, some important design criteria of a preconditioner, such as stiffness reduction, hyperbolicity, symmetrisability, accuracy preservation for M → 0, and M-property have been examined analytically.  相似文献   

16.
A finite volume numerical method for the prediction of fluid flow and heat transfer in simple geometries was parallelized using a domain decomposition approach. The method is implicit, uses a colocated arrangement of variables and is based on the SIMPLE algorithm for pressure-velocity coupling. Discretization is based on second-order central difference approximations. The algebraic equation systems are solved by the ILU method of Stone.1 To accelerate the convergence, a multigrid technique was used. The efficiency was examined on three different parallel computers for laminar flow in a pipe with an orifice and natural convection in a closed cavity. It is shown that the total efficiency is made up of three major factors: numerical efficiency, parallel efficiency and load-balancing efficiency. The first two factors were thoroughly investigated, and a model for predicting the parallel efficiency on various computers is presented. Test calculations indicate reasonable total efficiency and favourable dependence on grid size and the number of processors.  相似文献   

17.
A new model is presented for harmonic wave propagation and scattering problems in non-uniform, stratified waveguides, governed by the Helmholtz equation. The method is based on a modal expansion, obtained by utilizing cross-section basis defined through the solution of vertical eigenvalue problems along the waveguide. The latter local basis is enhanced by including additional modes accounting for the effects of inhomogeneous boundaries and/or interfaces. The additional modes provide implicit summation of the slowly convergent part of the local-mode series, rendering the remaining part to be fast convergent, increasing the efficiency of the method, especially in long-range propagation applications. Using the enhanced representation, in conjunction with an energy-type variational principle, a coupled-mode system of equations is derived for the determination of the unknown modal-amplitude functions. In the case of multilayered environments, hh- and pp-FEM have been applied for the solution of both the local vertical eigenvalue problems and the resulting coupled mode system, exhibiting robustness and good rates of convergence. Numerical examples are presented in simple acoustic propagation problems, illustrating the role and significance of the additional mode(s) and the efficiency of the present model, that can be naturally extended to treat propagation and scattering problems in more complex 3D waveguides.  相似文献   

18.
The high-order implicit finite difference schemes for solving the fractionalorder Stokes’ first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes.  相似文献   

19.
ABSTRACT

A numerical study is made to analyze the performance of a secant-ogive-cylinder projectile in the transonic regime in terms of aerodynamic drag. At transonic speeds, the base drag contributes a major portion of the total aerodynamic drag, and hence affects projectile's performances significantly. The base bleed method is applied to reduce the base drag by varying the value of parameters, the bleed quantity (I) and the bleed area ratio (?). The implicit, diagonalized, symmetric Total Variation Diminishing (TVD) scheme, accompanied by a suitable grid, is employed to solve the thin-layer axisymmetric Navier-Stokes equations coupled with the Baldwin-Lomax turbulence model. The computed results show that, in comparison with the case without base bleed, an increase in bleed quantity or a higher injection speed due to a smaller bleed area ratio at fixed bleed quantity can result in a base (and total) drag reduction. At Mach number 0.96, the reductions in base drag and total drag can be as high as 64% and 44%, respectively, for I = 0.1 and ? = 0.3.  相似文献   

20.
Hairpin-like vortical structures that form in the wall region of turbulent channel flow are investigated. The analysis is performed by following a procedure in which the Navier-Stokes equations are first integrated by means of a computational code based on a mixed spectral-finite difference technique in the case of the flow in a plane channel. A DNS turbulent-flow database, representing the turbulent statistically steady state of the velocity field through 10 viscous time units, is computed and the vortex-detection method of the imaginary part of the complex eigenvalue pair of the velocity-gradient tensor is applied to the velocity field. As a result, hairpin-like vortical structures are educed. Flow visualizations are provided of the processes of evolution that characterize hairpin vortices in the wall region of turbulent channel flow. The relationship is investigated between vortex dynamics and 2nd- and 4th- quadrant events, showing that ejections and sweeps play a fundamental role in the way the morphological evolution of a hairpin vortex develops with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号