首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the dimethylbenzylamine (DMBA)—phenylglyc idyl ether (PGE)—phenol complex was studied by IR and1H NMR spectroscopy under various conditions of its formation. The active catalyst in the cyclotrimerization of isocyanates is a complex of composition DMBA : PGE : PhOH = 1 : 1 : 2, in which the oxygen atom of the zwitter-ion PhCH2N+Me2CH2CH(O)CH2OPh that forms after opening, of the epoxide cycle is bound to two phenol molecules by a very strong hydrogen bonds. In this complex, the oxygen atom of both the zwitter-ion and the phenolate anion can be catalytic centers. Two schemes of the cyclotrimerization of isocyanate in the presence of the aforementioned catalytic system are suggested, depending on whether the catalytic complex has time to form or not.For Part I, see Ref. 1.Deceased.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1662–1668, July, 1996.  相似文献   

2.
《化学:亚洲杂志》2017,12(1):168-173
A catalytic [2+2+2] cyclotrimerization of unactivated internal alkynes providing cyclotrimerization products in excellent yields with high regioselectivity is described. The transformation is accomplished by using a simple catalytic mixture comprising Ni(acac)2, an imidazolium salt and a Grignard reagent at room temperature or 60 °C for 20 min or 1 h.  相似文献   

3.
The reaction of nido‐[1,2‐(Cp*RuH)2B3H7] ( 1 a , Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] under mild conditions yields the new metallaborane arachno‐[(Cp*RuCO)2B2H6] ( 2 ). Compound 2 catalyzes the cyclotrimerization of a variety of internal‐ and terminal alkynes to yield mixtures of 1,3,5‐ and 1,2,4‐substituted benzenes. The reactivities of nido‐ 1 a and arachno‐ 2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne‐insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2 . The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne‐insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum‐chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.  相似文献   

4.
Polymer-supported η5-cyclopentadienylrhoduim dicarbonyl and η5-cyclopentadienylcobalt dicarbonyl have been prepared with 20% divinylbenzene-polystyrene copolymer, macroporous beads. The beads have been tested for a variety of types of catalytic activity. The cobalt-containing beads have not proven to be catalysts. The rhodium beads were effective in hydrogenation of olefins, aldehydes and ketones, isomerization of olefins, disproportion of 1,4,-cyclohexadiene and cyclohexene, cyclotrimerization of ethyl propiolate, and hydroformylation of 1-pentene and 1-hexene. Decomposition of the rhodium catalysts occurs except in hydroformylation, although only slight loss of the carbonyl groups and catalytic activity was observed in cyclotrimerization.  相似文献   

5.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

6.
离子液体存在下脂肪醛的环化三聚反应   总被引:1,自引:0,他引:1  
Aliphatic aldehydes such as ethanal,propanal,n-butanal,isobutyraldehyde,n-valeraldehyde,isovaleraldehyde,n-hexanal and n-octanal were converted into the corresponding 2,4,6-trialkyl-1,3,5-trioxanes through cyclotrimer-ization in the presence of the ferric chloride based ionic liquids at room temperature without solvent in high selec-tivity.The effects of different ionic liquids,acidity of ionic liquids and temperature on cyclotrimerization were alsostudied.The results showed that the ferric chloride based ionic liquids(apparent molar fraction of FeCl_3(x(FeCl_3)=0.62))were a kind of efficient catalysts for the cyclotrimerization of aliphatic aldehyde which could be separatedconveniently from the reaction mixture and recycled without loss of catalytic activity.The conversion of isobu-tyraldehyde and the selectivity to 2,4,6-triisopropyl-1,3,5-trioxane were 91.1% and 99.8% respectively under opti-mum reaction condition(isobutyraldehyde 25.0 g,[Et_3NH]Cl/FeCl_3(x(FeCl_3)=0.62)1.0 g,25 ℃for 1 h).  相似文献   

7.
Wu Y  Wang S  Zhu X  Yang G  Wei Y  Zhang L  Song HB 《Inorganic chemistry》2008,47(12):5503-5511
A series of four coordinate rare earth metal amides with general formula ((CH2SiMe2)[(2,6- IPr2C6H3)N]2)LnN(SiMe3)2(THF) [(Ln = Yb(2), Y (3), Dy (4), Sm (5), Nd (6)] containing a diamido ligand (CH2SiMe2)[(2,6-iPr2C6H3)N]2(2-) with a CH2SiMe2 link were synthesized in good yields via reaction of [(Me3Si)2N]3Ln(III)(mu-Cl)Li(THF)3 with the corresponding diamine (CH2SiMe2)[(2,6-iPr2C6H3)NH]2 (1). All compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2, 3, 4, 5, and 6 were determined by single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes indicated that all complexes exhibited a high catalytic activity on the cyclotrimerization of aromatic isocyanates, which represents the first example of cyclopentadienyl-free rare earth metal complexes exhibiting a high catalytic activity and a high selectivity on cyclotrimerization of aromatic isocyanates. The temperatures, solvents, catalyst loading, and the rare earth metal effects on the catalytic activities of the complexes were examined.  相似文献   

8.
An efficient synthetic route to the concave‐shaped, potentially ionophoric syn‐ and anti‐isomers of 5,6,11,12,17,18‐hexahydro‐5,18:6,11:12,17‐triepoxytrinaphthylene ( 4 ) was elaborated. Starting from ‘oxabenzonorbornadiene’ ( 5 ), the stannylated precursor 9 was prepared in three steps, followed by cyclotrimerization catalyzed by copper(I) thiophene‐2‐carboxylate (CuTC) , which afforded 4 in a syn/anti ratio of 5 : 4.  相似文献   

9.
C3‐symmetric homochiral (?)‐syn‐trisoxonorbornabenzene 1 possessing a rigid cup‐shaped structure was synthesized through a novel regioselective cyclotrimerization of enantiopure iodonorbornenes catalyzed by palladium nanoclusters. The yield of the cyclotrimerization was dependent on the stability of the palladium clusters, which was ascertained from the appearance and TEM images of the reaction mixtures. The efficient preparation of (?)‐syn‐ 1 was established in short steps, including the newly developed cyclotrimerization reaction. The thus‐prepared homochiral (?)‐syn‐ 1 can serve as a key intermediate for the synthesis of C3‐symmetric homochiral cup‐shaped molecules with a helical arrangement of substituents. Introduction of several types of substituents was well demonstrated through palladium‐catalyzed coupling reactions with the corresponding phosphate and triflate of (?)‐syn‐ 1 .  相似文献   

10.
Synthesis of selectively substituted fluorenes and fluorenols was achieved by using catalytic [2+2+2]cyclotrimerization. Various starting diynes were reacted with different alkynes in the presence of a catalytic amount of Wilkinson’s catalyst (RhCl(PPh3)3) providing the compounds possessing the fluorene scaffold in good isolated yields. A set of four regioselectively substituted fluorenols was converted to the corresponding 9,9′‐spirobifluorenes and their spectral characteristics were measured.  相似文献   

11.
A highly regioselective cyclotrimerization of olefins with electron-withdrawing groups in a PdCl2/O2/DMF catalytic system is disclosed, and a possible mechanism has also been proposed, which reveals the PdCl2-catalyzed cyclotrimerization of olefins with electron-withdrawing groups goes through a quite different pathway from that of alkynes.  相似文献   

12.
Reaction of acetylene with tris(acetylacetonato)titanium(III) and diethylaluminum chloride system leads to formation of benzene, a trace of ethylbenzene, and a small amount of polyacetylene. The isotopic composition of products obtained from cyclotrimerization of acetylene-d2 and an equimolar mixture of acetylene and acetylene-d2 is investigated to elucidate the mechanism of the cyclotrimerization. The results suggest a mechanism in which an acetylene inserts into the metal—ethyl bond formed by reaction of Ti(acac)3 and Al(C2H5)2Cl, followed by insertion of two acetylene molecules and elimination of a hydrogen atom from the first inserted acetylene to yield an ethylbenzene and a metal hydride intermediate. The metal hydride intermediate catalyzes acetylene cyclotrimerization to give benzene. During the reaction, the hydrogen atom in the metal hydride intermediate does not exchange with the hydrogen atom in the inserted acetylene molecules.  相似文献   

13.
Summary Cocondensation of buta-1,3-diene with cobalt vapor followed by addition of triethylphosphine gave a new complexsyn-Co(C4H7)(C4H6)(PEt3) (1) in 43% yield. The reaction pathway leading to (1) was investigated by matrix isolation i.r. spectroscopy. The monodentate butadiene, which was found as a reaction intermediate in the –196 toca. 0° temperature range, rearranges into a -butenyl or bidentate butadiene. The reaction of (1) with bromoethane gave cycloocta-1,5-diene and 4-vinylcyclohex-1-ene in quantitative yield. Complex (1) catalyzes the cyclotrimerization of phenylacetylene to 1,3,5-triphenylbenzene.  相似文献   

14.
朱文闻  刘振 《分子催化》2021,35(2):158-165
应用密度泛函理论(DFT)研究了 Cr、Fe和Ni 3种金属原子催化乙炔环三聚生成苯的反应机理.结果表明,Cr、Fe和Ni催化体系均表现出自旋翻转现象,Cr原子催化乙炔环三聚过程在自旋七重态和五重态势能面上进行,速率控制步骤为形成铬金属七元环;Fe和Ni催化体系的速率控制步骤为两分子乙炔耦合过程.Cr催化体系表现出远高...  相似文献   

15.
Liquid crystalline aromatic monocyanate ( M ) and dicyanates ( D1 and D2 ) with trans-stilbene ( Ph CHCH Ph ) structure were synthesized and their cyclotrimerization reactions were studied by differential scanning calorimetry and infrared spectroscopy. Monocyanate M underwent cyclotrimerization to yield a trimerized material with discotic properties. Dicyanate D2 and its cured product failed to exhibit any mesophase. In contrast, polycyclotrimerization of dicyanate D1 obtained a liquid crystalline thermoset with its schlieren texture prolonged over a wide temperature range. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The cyclotrimerization reaction of benzobarrelene derivatives was investigated. Dibromobenzobarrelene 10 was converted to the bromostannyl derivative 11 , which was used as the substrate of the cyclotrimerization reaction. Thus, reaction of 11 , with copper(I) thiophene‐2‐carboxylate (CuTC) gave a mixture of the isomeric cyclotrimers 5 and 6 and the dimers 12 and 13 , in addition to a trace of protodestannylated bromoalkene 14 (Scheme 2).  相似文献   

17.
A porous rtl metal–organic framework (MOF) [Mn5L(H2O)6?(DMA)2]?5DMA?4C2H5OH ( 1? Mn) (H10L=5,10,15,20‐tetra(4‐(3,5‐dicarboxylphenoxy)phenyl)porphyrin; DMA=N,N′‐dimethylacetamide) was synthesized by employing a new porphyrin‐based octacarboxylic acid ligand. 1? Mn exhibits high MnII density in the porous framework, providing it great Lewis‐acid heterogeneous catalytic capability for the cycloaddition of CO2 with epoxides. Strikingly, 1? Mn features excellent catalytic activity to the cycloaddition of CO2 to epoxides, with a remarkable initial turnover frequency 400 per mole of catalyst per hour at 20 atm. As‐synthesized 1? Mn also exhibits size selectivity to different epoxide substrates on account of their steric hindrance. The high catalytic activity, size selectivity, and stability toward the epoxides on catalytic cycloaddition of CO2 make 1? Mn a promising heterogeneous catalyst for fixation and utilization of CO2.  相似文献   

18.
通过溶胶-凝胶法制备出不同Ni掺杂比例的双钙钛矿Sr_2Ni_xCo_(2-x)O_6(x=0.2,0.4,0.6,0.8),通过热分解法制备出具有层状结构的纳米颗粒g-C_3N_4,并制备其复合物催化剂。将双钙钛矿和g-C_3N_4分别制备成双功能电极片,用于测试其对氧还原(ORR)和氧析出(OER)的催化活性,然后选取具有最佳氧催化活性的Ni掺杂比例x=0.4的双钙钛矿与一定重量比例的g-C_3N_4进行复合,测试复合催化剂的氧催化活性。结果表明,复合后的催化剂催化效果明显优于单一催化剂,当g-C_3N_4添加量占双钙钛矿的30%(w/w)时复合催化剂催化氧还原反应的最大电流密度为395.7 mA·cm~(-2)(-0.6 V vs Hg/HgO),氧析出反应的最大电流密度为372.0mA·cm~(-2)(1 V vs Hg/HgO),这表明g-C_3N_4与Sr_2Ni_(0.4)Co_(1.6)O_6复合后协同催化能够提高双钙钛矿的氧催化活性。  相似文献   

19.
The catalytic activity of bovine serum albumin (BSA) modified physically by molecular imprinting using transition-state analogue (TSA) as a template molecule was studied. The resultant imprinted serum albumin (Imp-BSA) showed the rate acceleration of dehydrofluorination reaction from (4R,4S)-4-fluoro-4-(4-nitrophenyl)butan-2-one ( 1 ) and followed the type of Michaelis-Menten reaction in ethyl acetate solution. The enzymatic activity of Imp-BSA was competitively inhibited by (4R,4S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one ( 4 ).  相似文献   

20.
Graft copolymerization of a bicycloorthoester (BOE) with polymer-supported sulfonium salts was studied. Several polymer-supported sulfonium salts were prepared by the homopolymerizations of p-vinylbenzyl tetramethylenesulfonium hexafluoroantimonate ( 2 ) and 4-(p-vinylphenyl)butyl tetramethylenesulfonium hexafluoroantimonate ( 3 ), and by the copolymerizations of 2 with some vinyl monomers (n-butyl vinyl ether, styrene, acrylonitrile, and p-styrenesulfonic acid potassium salt). These sulfonium salts could initiate the polymerization of BOE to give grafted polymers. Temperature dependences of the catalytic activity of them were not so dramatic as that of benzyl tetramethylenesulfonium hexafluoroantimonate ( 1 ), but the activities of them were higher than that of 1 at temperatures lower than 80°C. The conversion of BOE in the polymerizations with these polymer initiators was ca. 30–70% at 120°C for 7 h. An effect of the comonomer structure on the catalytic activity was observed and styrene was the best comonomer for 2 in terms of the reactivity of the copolymer. The spacer-modified sulfonium salt (homopolymer of 3 ) was slightly lower than polymer-supported benzyl type sulfonium salt (homopolymer of 2 ) in the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号