首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a powerful tool for the measurement of low molecular mass compounds of biological interest. The limitations for this method are the volatility of many analytes, possible interference with matrix signals or bad ionization or desorption behavior of the compounds. We investigated the application of well-known and straightforward one-pot derivatization procedures to circumvent these problems. The derivatizations tested allow the measurement and the labeling of alcohols, aldehydes and ketones, carboxylic acids, alpha-ketocarboxylic acids and amines.  相似文献   

3.
Lariat ethers with pendant amide groups have shown promise as new ion sensors because of their selectivity towards particular metal ions. In this study we report alkali and alkaline earth metal binding selectivities of dibenzo-16-crown-5 and fifteen dibenzo-16-crown-5 lariat ether amides (LEAs) as determined by electrospray ionization mass spectrometry (ESI-MS). Additionally, the influence of the acid/base nature of the solution on metal cation selectivity is investigated. The validity of using ESI-MS for determination of selectivities is established by analogous experiments using hosts with known binding constants for the same metal cations and solvent systems. Collisionally activated dissociation (CAD) is used to evaluate the influence of the alkali metal cation binding on the fragmentation of the LEAs.  相似文献   

4.
Field desorption mass spectrometry was used to obtain molecular weight information on a variety of transition metal complexes which are air sensitive and nonvolatile. The base peak for the neutral complexes is the molecular ion and for the salt complexes is the cation.  相似文献   

5.
6.
A method for the detection of BPDE-d guanosine adducts using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described and illustrated. The results indicate that MALDI is capable of detecting two other DNA benzopyrene adducts, which are trace products formed during the synthesis of BPDE-d guanosine. This MALDI-TOFMS method offers the potential for the detection of DNA adducts in human tissue using very limited sample purification and preparation.  相似文献   

7.
The low-mass ions observed in both positive and negative plasma desorption mass spectrometry (PDMS) of the high explosives HMX, RDX, CL-20, NC, PETN and TNT are reported. Possible identities of the most abundant ions are suggested and their presence or absence in the different spectra is related to the properties of the explosives as matrices in PDMS. The detection of abundant NO+ and NO2- ions for HMX, RDX and CL-20, which are efficient matrices, indicates that explosive decomposition takes place in PDMS of these three substances and that a contribution from the corresponding chemical energy release is possible. The observation of abundant C2H4N+ and CH2N+ ions, which have high protonation properties, might also explain the higher protein charge states observed with these matrices. Also, the observation of NO2-, possibly formed by electron scavenging which increases the survival probability of positively charged protein molecular ions, completes the pattern. TNT does not give any of these ions and it is thereby possible to explain why it does not work as a PDMS matrix. For NC and PETN, decomposition does not seem to be as pronounced as for HMX, RDX and CL-20, and also no particularly abundant ions with high protonation properties are observed. The fact that NC works well as a matrix might be related to other properties of this compound, such as its high adsorption ability.  相似文献   

8.
Field desorption mass spectrometry is shown to be a useful technique for observing dimer formation in C-nitroso compounds. Mixed dimer formation (RN2O2R′) is shown to be readily observed by field desorption mass spectrometry.  相似文献   

9.
10.
Plasma desorption mass spectrometry (PDMS) was investigated as a means of analysing mixtures of three, four and five amino acids in both positive- and negative-ion modes. Fifteen mixtures were tested; each mixture contained equimolar amounts of selected amino acids. The PD mass spectra exhibited MH+ and [M – H]? molecular ions for all the aminoacids with different desorption–ionization yields. The spectra were more easily interpreted in the negative- than the positive-ion mode. The desorption order of the amino acids was progressively established by comparing the molecular ion desorption–ionization yields for each mixture. This desorption order was well correlated in both the positive- and negation-ion modes with the acid–base thermodynamic data for the amino acids in the gas phase. This observation gives some insight into the desorption–ionization mechanisms under PDMS conditions.  相似文献   

11.
Resorc[4]arenes are compounds with interesting properties, mainly because of their ability to form host-guest complexes with the guest located inside the cavity. The size of the guest limits the complexation, as shown by a competition experiment with tetraalkylammonium ions of different size. By electroscopy ionization tandem mass spectrometric experiments on resorc[4]arene heterodimers bearing an alkali metal ion as guest, it was found that there must be two different binding mechanisms for alkali metal ions with high surface charge density (Li(+) and Na(+)) on the one hand compared with those with a lower surface charge density on the other hand (K(+), Rb(+), Cs(+)).  相似文献   

12.
The development of some new ionization techniques for thermally labile compounds has considerably extended the applicability of mass spectrometry to biochemical, medical and environmental sciences. Field desorption mass spectrometry (FD MS) is one of these techniques in which ions are directly formed from solids or liquids.  相似文献   

13.
The aim of this study was to determine the chemical structure of in vitro 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-modified oligodeoxynucleotides (ODNs) by exonuclease digestion and matrix-assisted laser desorption/ionization mass spectrometry. A single-stranded 11-mer ODN, 5'-d(CCATCGCTACC), was reacted with N-acetoxy-PhIP, resulting in the formation of one major and eight minor PhIP-ODN adducts. A 10 min treatment of the major and one minor PhIP-ODN adduct with a 3'-exonuclease, bovine intestinal mucosa phosphodiesterase (BIMP), and a 5'-exonuclease, bovine spleen phosphodiesterase, results in inhibition of the primary exonuclease activity at deoxyguanosine (dG) producing 5'-d(CCATCG(PhIP)) and 5'-d(G(PhIP)CTACC) product ions, respectively. Post-source decay (PSD) of these enzymatic end products identifies dG as the sole modification site in two 11-mer ODN-PhIP adducts. PSD of the minor PhIP-ODN adduct digestion end product, 5'-d(CCATCG(PhIP)), also reveals that the PhIP adducted guanine moiety is in an oxidized form. Prolonged treatment of the PhIP-ODN adducts at 37 degrees C with BIMP induces a non-specific, or endonuclease, enzymatic activity culminating in the formation of deoxyguanosine 5'-monophosphate-PhIP (5'-dGMP-PhIP). The PSD fragmentation pattern of the 5'-dGMP-PhIP [M + H](+) ion of the major adduct confirms PhIP binds to the C-8 position of dG. For the minor adduct, PSD results suggest that PhIP binds to the C-8 position of an oxidized guanine, supporting the hypothesis that this adduct arises from oxidative degradation, resulting in a spirobisguanidino structure.  相似文献   

14.
A new on-target deuteration technique in plasma desorption mass Spectrometry (PDMS) is proposed, involving replacing labile hydrogen atoms in a molecule with deuterium atoms. This technique is very simple and allows direct comparison of spectra before and after deuteration for the same probe. The utility of the deuteration procedure in PDMS has been demonstrated in obtaining additional information on the structure of a molecule and its fragments and on the mechanism of quasi-molecular ion formation.  相似文献   

15.
Over the last few years, 'soft' ionisation methods have extended the range of applications of mass spectrometry to biochemical, medical and environmental sciences. Laser desorption is one of these techniques, developed for investigations of thermally labile, non-volatile compounds directly from the condensed phase.  相似文献   

16.
Apolar, neutral peptides have been shown to ionize extremely well under the conditions used for electrospray ionization mass spectrometry (ESIMS). Peptides for which the conformations have been independently determined in solution and in crystals have been examined by ESIMS. Studies of peptide helices ranging from 7 to 18 residues reveal that shorter helices yield exclusively singly charged ions, while in larger helices multiply charged species are detectable. Multiple sites for protonation/metallation are introduced in the helix by proline insertion or by changing the chirality in the residue. The preferred site of cation binding to helices may be the C-terminus end, where three free CO groups are available for chelation. Ab initio and DFT calculations at several levels have been carried out for the binding of H+, Li+, Na+, and K+ to CHO-(Gly)3)-OMe. The results reveal that metallation in helices is favoured by chelation to carbonyl groups at the C-terminus, while protonation involved two carbonyl groups and thus favour a 10-membered cyclic hydrogen-bonded structure. In -strands, metallation/protonation occurs at isolated carbonyl groups. Collision induced fragmentation of hydrophobic peptides under ESI conditions reveals that helix fragmentation occurs predominantly from the C-terminus, while in -hairpins cleavage occurs simultaneously at multiple sites.  相似文献   

17.
Department of Chemistry, Texas A & M University, College Station, Texas, USA We present a new approach to substrate selection for californium-252 plasma desorption mass spectrometry (252Cf_PDMS) in which small volatile molecules that are water insoluble are used as matrices in place of the polymeric substrates used in previous studies. The desirable features of analyte adsorption are combined with the concept of using a volatile matrix to reduce the level of internal excitation of a desorbed analyte and to assist in ionization during the desorption process. Derivatives of anthracene were found to meet these requirements and to perform satisfactorily as substrates in 252Cf-PDMS. Spectra were obtained for bovine insulin (m I z 5734) adsorbed onto 9-anthroic acid and 2-aminoanthracene and compared with spectra using a nitrocellulose substrate. Sharper peaks and lower backgrounds are observed when the 9-anthroic acid matrix is used, indicating reduced levels of internal excitation and initial kinetic energy for the desorbed molecular ion of insulin. A comparison of the performance of 9-anthroic acid and 2-aminoanthracene shows the influence of substrate functional groups on desorbed protein yields. Finally, the versatility of the small-molecule matrix concept is discussed with respect to selection of a range of functionality, solubility, and hydrophilicity.  相似文献   

18.
The ionization energies and [C3H5O]+ appearance energies for a series of oxygenated organic compounds have been measured by dissociative photoionization mass spectrometry. The adiabatic ionization energy for cyclopentanol is observed to be 9.72 eV. A 298 K heat of formation of 591.2±2.3kJ mol?1, based on the stationary electron convention, is derived for the propanoyl cation in the gas phase. A heat of formation of –86±6 kJ mol?1 is obtained for methylketene, which leads to an absolute proton affinity of 853±8 kJ mol?1.  相似文献   

19.
This paper presents the first membrane inlet mass spectrometry system capable of detecting large biomolecules, such as testosterone (M(r) 288), testosterone acetate (M(r) 330) and alpha-tocopherol (M(r) 430, vitamin E). The result was obtained using a home-made chemical ionization ion source with a thermostated tubular silicone membrane mounted right in the centre of a methane CI plasma. The liquid sample was flushed through the inside of the membrane for a period of 20-25 min, where the analyte diffused into the membrane. Following this trapping period the analyte was released from the membrane into the mass spectrometer by the combined action of heat radiation from the filament and charge transfer from the chemical ionization plasma. As a result of this stimulated desorption a good desorption peak was obtained as the analyte vaporized out of the membrane. Retinol (M(r) 286, vitamin A), cholecalciferol (M(r) 384, vitamin D3) and cholesterol (M(r) 386) were also detected. However, these compounds (all containing a long hydrocarbon chain and being aliphatic alcohols) did not give a protonated molecule. They gave a series of cluster ions with the dominant located 20 mass units below the molecular ion. The detection limits of the new desorption chemical ionization MIMS technique were at low or sub-micromolar concentrations (high ppb levels) and the reproducibility was within 20%, when the area of the desorption peak was used for quantitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号