首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local dynamics of three poly(propylene imine) dendrimers with hydrophilic triethylenoxy methyl ether terminal groups were studied in D2O by the measurement of the 1H NMR relaxation times, which were treated with the Lipari–Szabo model‐free approach. The results showed that the overall mobility increased with temperature and decreased with increasing dendrimer size. An Arrhenius trend was observed for both overall and local motions. The activation energy of overall tumbling increased from 11.3 to 17.5 kJ/mol with the dendrimer size. The local mobility decreased from the outer part to the inner part of the dendrimer and with the dendrimer size. The spatial restriction of local motions decreased with increasing temperature up to 55 °C and remained constant above 55 °C. Local motions were more restricted when the dendrimer size increased. The results showed that the hydrophilic end groups of the dendrimers were located preferentially at the periphery of the molecules and were extended in the aqueous environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2969–2975, 2003  相似文献   

2.
The reactions between the OH, H and eaq transients of water radiolysis and a linear poly(N-isopropylacrylamide) were identified by the spectral and kinetic properties of intermediates. The radical responsible for crosslink formation is the isopropyl-centered radical that forms mainly in OH radical attack on the polymer. Below pH 3 this radical undergoes reversible protonation with pKa≈2.1. The radical decay is composed of fast and slow parts. The initial fast decay is attributed to intramolecular reactions of radicals on the same chain (loop formation), the following slow decay to competition between further intramolecular and intermolecular (H-type crosslinks) termination processes. The differences in the network formation during irradiation of aqueous monomer and polymer solutions are discussed.  相似文献   

3.
The pH- and temperature-responsive optical properties of a quinoline-labeled poly(N-isopropylacrylamide) copolymer are explored in aqueous solution and compared to the respective behavior of a similar quinoline-labeled poly(N,N-dimethylacrylamide) copolymer. These copolymers, P(NIPAM-co-SDPQ) and P(DMAM-co-SDPQ), were prepared through free radical copolymerization of 2,4-diphenyl-6-(4-vinylphenyl)quinoline (SDPQ) with the thermosensitive N-isopropylacrylamide (NIPAM) and the hydrophilic N,N-dimethylacrylamide (DMAM), respectively. Both copolymers exhibit the well-known pH-controlled optical response of quinoline unit in aqueous solution and the emitted color changes from blue to green upon decreasing pH. Nevertheless, a ~20 nm emission shift is observed upon heating the aqueous P(NIPAM-co-SDPQ) solution, regardless of pH, due to the formation of hydrophobic microdomains (Nile Red probing), as a consequence of the Lower Critical Solution Temperature (LCST) behavior of this copolymer in water. Interestingly, this LCST behavior also imposes the partial deprotonation of the otherwise protonated SDPQ unit at pH = 2 and the emission of the basic form appears upon increasing temperature, suggesting that the acid/base equilibrium of the quinoline unit is significantly temperature-controlled, when introduced in the thermosensitive poly(N-isopropylacrylamide) chain.  相似文献   

4.
Interaction of poly(N-isopropylacrylamide) (PNIPAAM) with perfluorooctanoic acid (PFOA) was explored in aqueous solution. Increasing concentrations of PFOA were observed first to depress slightly the lower critical solution temperature (LCST) then to elevate it at concentrations greater than ca. 2.5 mM. At concentrations >ca. 3.5 mM, the LCST transition could not be detected by either microcalorimetry or cloud point measurements. PNIPAAM appeared to promote the micellization of PFOA. Pinacyanol dye experiments were ambiguous, but the aggregation concentration reported by surface tension measurements was clearly depressed upon addition of PNIPAAM.  相似文献   

5.
We observed phase transition and phase relaxation processes of a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution using the heterodyne transient grating (HD-TG) method combined with the laser temperature jump technique. The sample temperature was instantaneously raised by about 1.0 K after irradiation of a pump pulse to crystal violet (CV) molecules for heating, and the phase transition was induced for the sample with an initial temperature just below the lower critical solution temperature (LCST); the following phase relaxation dynamics was observed. Turbidity relaxation was observed in both the turbidity and HD-TG responses, while another relaxation process was observed only in the HD-TG response, namely via the refractive index change. It is suggested that this response is due to formation of globule molecules or their assemblies since they would have nothing to do with turbidity change but would affect the refractive index, which is dependent on the molar volume of a chemical species. Furthermore, the grating spacing dependence of the HD-TG responses suggests that the response was caused by the counter propagating diffusion of the coil molecules as a reactant species and the globule molecules as a product species and the lifetime of the globule molecules ranged from 1.5 to 5 seconds. Thus, we conclude that the turbidity reflects the dynamics of aggregate conditions, not molecular conditions. The coil and globule sizes were estimated from the obtained diffusion coefficient. The sizes of the coil molecules did not change at the initial temperatures below the LCST but increased sharply as it approaches LCST. We propose that the coil-state molecules associate due to hydrophobic interaction when the initial temperature was higher than LCST minus 0.5 K and that the globule-state molecules generated from the coil-state molecules showed a similar trend in temperature. The phase transition was also induced by heating under a microscope, and the relaxation process was followed using the fluorescence peak shift of a fluorescent molecule-labeled PNIPAM. The result also supports the existence of a globule molecule or its assembly remains for several seconds in the phase relaxation.  相似文献   

6.
Trimethylamine N-oxide (TMAO) is a compatible or protective osmolyte that stabilizes the protein native structure through non-bonding mechanism between TMAO and hydration surface of protein. However, we have shown here first time the direct binding mechanism for naturally occurring osmolyte TMAO with hydration structure of poly(N-isopropylacrylamide) (PNIPAM), an isomer of polyleucine, and subsequent aggregation of PNIPAM. The influence of TMAO on lower critical solution temperature (LCST) of PNIPAM was investigated as a function of TMAO concentration at different temperatures by fluorescence spectroscopy, viscosity (η), multi angle dynamic light scattering, zeta potential, and Fourier transform infrared (FTIR) spectroscopy measurements. To address some of the basis for further analysis of FTIR spectra of PNIPAM, we have also measured FTIR spectra for the monomer of N-isopropylacrylamide (NIPAM) in deuterium oxide (D(2)O) as a function of TMAO concentration. Our experimental results purportedly elucidate that the LCST values decrease with increasing TMAO concentration, which is mainly contributing to the direct hydrogen bonding of TMAO with the water molecules that are bound to the amide (-CONH) functional groups of the PNIPAM. We believed that the present work may act as a ladder to reach the heights of understanding of molecular mechanism between TMAO and macromolecule.  相似文献   

7.
Hydrogels undergo reversible and discontinuous volume changes in response to variation of solution conditions such as solvent composition, temperature, salt concentration, and pH. In this contribution we focus our attention on the experimental and theoretical investigation of these swelling equilibria of aqueous cross-linked poly (N-isopropylacrylamide) solutions as well as on the connected demixing behavior of the linear polymer dissolved in water. For the experimental study of the (liquid + liquid) equilibrium an alternative method based on refractive index measurements is suggested. In order to calculate the swelling behavior a model combining an expression for the Gibbs free energy of mixing with an expression for the elastic network is applied. As a model for the Gibbs free energy of mixing the UNIQUAC-approach and the Koningsveld–Kleintjens model are used. For the elastic network contribution again two different theories, namely the phantom network theory and the affine network theory, were applied. Whereas the type of network theory has only a small influence on the calculation results, the Gibbs free energy of mixing has a large impact. Using the UNIQUAC-approach the swelling equilibria can be correlated close to the experimental data, however, this model predicts a homogeneous mixture for linear polymer chains in water. In contrast to this situation the Koningsveld–Kleintjens model does a good job in calculating the swelling equilibria as well as the demixing curve, however, the adjustable parameter must be changed slightly.  相似文献   

8.
1H and 2H NMR methods were used to investigate the effect of fillers on the molecular motions in filled poly(dimethylsiloxane). Molecular mobility at the polymer filler interface is strongly different from that outside the adsorption layer. The influence of concentration and type of filler on molecular motions and concentration of the adsorption layer was determined.  相似文献   

9.
Critical micelle concentrations (cmc) of aqueous solutions of poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) were determined at several temperatures by surface tensiometry. Below the lower critical solution temperature (LCST), the low Delta mic H 0 determined can be assigned to the PMMA block being tightly coiled in the dispersed molecular state, so that the unfavorable interactions of hydrophobic entities with water are minimized. Above the LCST the cmc value was found to increase; an anomalous behavior that can be directly related to the micelle-globule transition of the hydrophilic block. Interestingly, above the LCST the surface tension of relatively concentrated solutions was found to depend weakly on temperature not following the usual strong decrease with temperature expected for aqueous solutions.  相似文献   

10.
Measurements of the complex relative permittivity of poly(vinyl acetate) from 35 °C to 190 °C and poly(vinyl chloride) from 90 °C to 150 °C in the frequency range 10–2 –107 Hz and the pressure range 1–5000 bar are reported. Details of the pressure generating system and of the dielectric equipment are described.  相似文献   

11.
The phase separation mechanism in semidilute aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions is investigated with small-angle neutron scattering (SANS). The nature of the phase transition is probed in static SANS measurements and with time-dependent SANS measurements after a temperature jump. The observed critical exponents of the phase transition describing the temperature dependence of the Ornstein-Zernike amplitude and correlation length are smaller than values from mean-field theory. Time-dependent SANS measurements show that the specific surface decreases with increasing time after a temperature jump above the phase transition. Thus, the formation of additional hydrogen bonds in the collapsed state is a kinetic effect: A certain fraction of water remains as bound water in the system. Moreover, H-D exchange reactions observed in PNIPAM have to be taken into account.  相似文献   

12.
The dielectric environment surrounding poly(N-isopropylacrylamide) in aqueous solution was investigated by probing with spirobenzopyran covalently attached as a side chain to the polymer main chain. Inherent characteristics of the spirobenzopyran chromophore were analyzed, and the chromophore was confirmed to be suitable to probe the local polar condition around the polymer. Measurements for an aqueous polymer solution at various temperatures elucidated that the dielectric environment surrounding the polymer changed continuously even in the temperature range far below the lower critical solution temperature. This result suggested that the local and weak orientation of water molecules around the polymer diminished continuously in a preliminary stage of shifting to thermally induced phase separation. The dielectric environment surrounding thermoresponsive polymer in aqueous solution was investigated by probing with spirobenzopyran covalently attached as a side chain to the polymer main chain.  相似文献   

13.
14.
15.
The interaction of poly(1-vinylimidazole) and poly(1-vinyl-1,2,4-triazole) with HCl and alkalies in aqueous and water-salt solutions was investigated by potentiometric titration, viscosimetry, 1H and 13C NMR, and UV spectroscopy. The effect of the nature and concentration of low-molecular counterions was found. The interaction of poly(1-vinylazoles) with the acid results in the protonation of the azole cycle. The interaction of poly(1-vinylazoles) with alkalies is stipulated by the capability of the pyridine N atom of forming a coordination bond with the metal ion and that of the unsaturated pi-system of the heterocycle of coordinating with the anions.  相似文献   

16.
A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on hydrogens covalently attached to carbon and oxygen atoms in 13C,15N labeled and fully protonated or fractionally deuterated proteins to uniformly enhance longitudinal relaxation of the 1HN spins and concomitantly the sensitivity of multipulse NMR experiments. The proposed longitudinal relaxation optimization is implemented in the 2D [15N,1H]-LTROSY, 2D [15N,1H]-LHSQC and 3D LTROSY-HNCA experiments yielding the factor 2-2.5 increase of the maximal signal-to-noise ratio per unit time at 600 MHz. At 900 MHz, the predicted decrease of the 1HN longitudinal relaxation times can be as large as one order of magnitude, making the proposed method an important tool for protein NMR at high magnetic fields.  相似文献   

17.
Poly(N-isopropylacrylamide)-b-poly(2-vinylpyridine) (PNIPAM-b-P2VP) block copolymers were synthesized for the first time via reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of S-1-dodecyl-S(')-(a,a(')-dimethyl-a(')-acetic acid)trithiocarbonate as chain transfer agent (CTA) and 2,2(')-azobis(isobutyronitrile) as initiator. Both pH- and thermo-induced micellization behavior of the PNIPAM(59)-b-P2VP(102) block copolymer in dilute aqueous solution was investigated by pyrene fluorescence, dynamic and static light scattering, transmission electron microscopy and (1)H NMR. The results show that the critical aggregation pH value of the block copolymer is around 5 and the critical aggregation temperature of the block copolymer is around 42 degrees C. A reversible transition between P2VP-core and PNIPAM-core micelles can be observed through an intermediate unimer state in aqueous solution.  相似文献   

18.
Spin-lattice relaxation time, spin-spin relaxation time and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY) experiments of polyoxyethylene lauryl ether (Brij-35) micelles in aqueous solutions at a concentration of 100 times the critical micellar concentration (cmc) give direct evidence that the hydrophilic polyoxyethylene chains, staying in the exterior of the micellar core, are coiled, bent and aligned around the micellar core with a certain number of water molecules included. This hydrophilic layer is in contact with the solvent, water, keeping the micellar solution stable. 1H NMR relaxation time measurements show that the first oxyethylene group next to the alkyl chain participates in the formation of the surface area of the micellar core. The motion of the hydrophilic polyoxyethylene chains is less restricted as compared with the hy-drophobic alkyl chains.  相似文献   

19.
The effect of pressure (up to 6300 atm) on the electrical conductivity of poly(methacrylic acid) (PMA) in aqueous solution was investigated in the concentration range 0.001M to 0.1M (in equivalents of carboxyl groups) at 30°C. The degree of ionization α calculated from the conductivity data increased linearly with pressure. From dilatometric measurements of volume changes when PMA was partially neutralized with NaOH, a conformational transition was confirmed to take place above α = 0.12, and the volume change accompanying the dissociation of the side chain groups (carboxyl groups) was found to be ? 12.5 ml/H+. It may be inferred from the values of α at each polymer concentration and from the dilatometric data that there is no conformational transition from a compact structure to the coiled form below at least 6,000 atm in the absence of Na+ counterions.  相似文献   

20.
(1)H nuclear magnetic resonance (NMR) spectroscopy has been applied to study the temperature and concentration-induced micellization of a poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymer, Pluronic P105, in D(2)O solutions in the temperature range from 5 to 45 degrees C and the concentration range from 0.01 to 15% (w/v). The intrinsic probes, the chemical shift, and the half-height width of the PO CH(3) signal are very sensitive to the local environment and can be used to characterize the temperature and concentration-dependent aggregation process. When the temperature approaches the critical micellization temperature or the polymer concentration reaches the critical micellization concentration, the chemical shift of the PO CH(3) signal moves toward lower ppm values and the half-height width of the PO CH(3) signal shows a sudden increase. It indicates that the methyl groups are experiencing a progressively less polar environment and transferring from water to the hydrophobic micellar core. The hydrodynamic radius of the unimers and the micelles are determined as be 1.8 and 5.0 nm by means of pulsed-field gradient spin-echo (PGSE) NMR. They were independent of temperature and concentration. The drastic shortening of spin-lattice relaxation time T(1) for the PO CH(3)/CH(2) protons in the transition region suggested that the PPO blocks are located in a "liquid-like" micellar core, whereas the exponential increase of T(1) for the PEO CH(2) protons implied that the PEO blocks are still keeping in contact with surrounding water. Thermodynamics analysis according to a closed association model shows that the micellization process is entropy-driven and has an endothermic micellization enthalpy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号