首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The structure of five conformations of the-lac inhibitor clavulanic acid have been optimized using ab initio gradient methods at the 4-21G level. The conformations of lowest energy possess an intramolecular H bond and also have the lowest pyramidization of N1. Different side-chain conformations lead to (i) differences in anomeric interactions and variations of the hydroxyethylidene geometry and (ii) changes in the geometry of the ring skeleton, which are smaller in the four- than in the five-membered ring.On leave from Universidad de Santiago de Compostela, Departamento de Química Física, Facultad de Química, Galicia (Spain).  相似文献   

2.
The full conformational space of N-acetyl-l-cysteine-N-methylamide was explored by ab initio (RHF/ 6-31G(d)) and DFT (B3LYP/6-31G(d)) computations. Multidimensional conformational analysis predicts 81 structures in N-acetyl-l-cysteine-N-methylamide, but only 47 relaxed structures were previously determined at the RHF/3-21G level of theory. These structures were now optimized using RHF/6-31G(d) and B3LYP/6-31G(d) approaches. Seven conformational migrations were observed when recalculated at higher level of theory. Besides these major changes, only smaller conformational shifts were operative for the remaining stationary points. The exploration of the whole conformational space of N-acetyl-l-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.  相似文献   

3.
We employ ab initio calculations of van der Waals complexes to study the potential energy parameters (C(6) coefficients) of van der Waals interactions for modeling of the adsorption of silver clusters on the graphite surface. Electronic structure calculations of the (Ag(2))(2), Ag(2)-H(2), and Ag(2)-C(6)H(6) complexes are performed using a coupled-cluster approach that includes single, double, and perturbative triple excitations (CCSD(T)), M?ller-Plesset second-order perturbation theory (MP2), and spin-component-scaled MP2 (SCS-MP2) methods. Using the atom pair approximation, the C(6) coefficients for silver-silver, silver-hydrogen, and silver-carbon atom systems are obtained after subtracting the energies of quadrupole-quadrupole interactions from the total electronic energy.  相似文献   

4.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

5.
A three‐dimensional potential energy surface of the electronic ground state of ZnH2 (${X}^1\sum _g^ +$ ) molecule is constructed from more than 7500 ab initio points calculated at the internally contracted multireference configuration interaction with the Davidson correction (icMRCI+Q) level employing large basis sets. The calculated relative energies of various dissociation reactions are in good agreement with the previous theoretical/experimental values. Low‐lying vibrational energy levels of ZnH2, ZnD2, and HZnD are calculated on the three‐dimensional potential energy surface using the Lanczos algorithm, and found to be in good agreement with the available experimental band origins and the previous theoretical values. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
A three-dimensional potential energy surface of the ground electronic state HArF is constructed from more than 2000 ab initio points at the multireference averaged quadratic coupled-cluster level employing an augmented large basis set. The calculations indicate that the linear HArF molecule is metastable with a barrier of 0.643 eV in the atomization (HArF --> H + Ar + F) channel and a barrier of 1.017 eV in the dissociation (HArF --> Ar + HF) channel. Variational calculations of low-lying predissociative resonances of both HArF and DArF are performed on the three-dimensional potential energy surface using a complex-symmetric Lanczos propagation method, which yields both positions and widths of the resonance states. The resonance lifetime generally decreases with energy, but strong mode selectivity exists. Reasonably good agreement with experiment confirms the accuracy of our potential. These calculations provide valuable information on the stability and dynamics of HArF/DArF in its ground electronic state.  相似文献   

7.
Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.  相似文献   

8.
Jacek Koput   《Chemical physics letters》1995,240(5-6):553-559
The molecular parameters of dinitrogen tetroxide, N2O4, have been determined in large-scale ab initio calculations using the multiconfigurational second-order perturbation method, CASSCF/CASPT2, and basis sets of double- to quadruple-zeta quality. With the largest basis set employed, cc-pVQZ for nitrogen and cc-pVTZ for oxygen, the structural equilibrium parameters are determined to be r(NN) = 1.7940 Å, r(NO) = 1.1906 Å and (NNO) = 112.55°. The potential energy barrier at the staggered conformation of the molecule is found to be 2313 cm−1, and the binding energy of the NN bond is calculated to be 4616 cm−1 (13.2 kcal/mol).  相似文献   

9.
Photochemical decomposition of 3,3-dimethyldiazirine (DMD) has been computationally investigated by using high-level ab initio calculations in conjunction with the 6-31G and cc-pvdz basis sets. The geometries of minima and transition states, as well as conical intersection points in the seam of crossing of two surfaces, have been optimized with the complete active space self-consistent field (CAS-SCF) method, and their energies, recalculated with second-order multireference perturbation (CAS/MP2) theory. The reaction path starting at the excited n-pi state of DMD is predicted to occur via a nonadiabatic mechanism, giving carbene and molecular dinitrogen (both in their singlet ground states) as the main products; the computed barrier height (1.0 kcal mol(-)(1)) agrees well with the experimental estimate of the activation energy in the singlet excited state (0.0-1.5 kcal mol(-)(1)). Ground state of dimethylcarbene is the only species where a 1,2-hydrogen shift takes place, being the only source of propene. The calculated potential energy barrier height for dimethylcarbene to propene isomerization (2.6 kcal mol(-)(1)) agrees well with the observed activation energy (2.56 kcal mol(-)(1)). No evidence for rearrangement in the first singlet excited state of DMD has been found; such a process would lead to a higher activation energy than the observed one. Consequently, 1,2-hydrogen migration concurrent with N(2) extrusion in the excited state has been ruled out.  相似文献   

10.
Density functional theory (DFT) has been used to study the structural stability of possible intermediate alanate structures, Na5Al3H14 and Na2AlH5, in the thermal decomposition of NaAlH4. Na5Al3H14 crystallizes in the space group P4/mnc with lattice constants , and c/a=1.52. It is shown that both Na5Al3H14 and Na2AlH5 have the right thermodynamics and can fit in as an intermediate state during the thermal decomposition process of NaAlH4. The heat of formation of Na5Al3H14 is −60 kJ/mol H2, which is intermediate between that of NaAlH4 (−51 kJ/mol H2) and Na3AlH6 (−69.7 kJ/mol H2). An alternative decomposition pathway based on Na2AlH5 has also been discussed. Frequency analysis showed that the least energetic Na2AlH5 structure has imaginary frequencies, implying that it is unstable. The presence of soft phonon modes also shows that Na5Al3H14 is mechanically metastable. These results are consistent with the notion that they are the intermediate states that lead to the formation of AlH3. This facilitates the mass transport of aluminum atoms in the decomposition pathway of NaAlH4.  相似文献   

11.
12.
High-level ab initio correlated methods, including calculations at various Møller-Plesset, QCISD, and CCSD levels of theory, have been used to study the potential energy surface for the reaction of organic sulfides with singlet oxygen. This has led to the identification and characterization of two discrete intermediates during the oxidation of sulfides to sulfoxides. One intermediate has a persulfoxide structure (1) while the other is a structure involving a thiadioxirane ring (2). These results are in excellent agreement with experimental results. The relative importance of improving correlation treatment and basis set completeness are assessed.  相似文献   

13.
Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.  相似文献   

14.
L. L. LOHR 《ChemInform》1990,21(38):no-no
Ab initio results are reported for three isomers of P4O as well as for a transition state.  相似文献   

15.
Formamide, formamidic acid, and amidine water complexes were studied using 3-21G fully optimized structures and 6–31G energies. Hydrogen bonding and a water-mediated tautomerism mechanism were examined. The optimized complexes show that relaxation of the monomers has occurred. Hydrogen bond lengths and energies fall within the range of values found using other basis sets and other comparable systems.  相似文献   

16.
The multireference spin-orbit (SO) configuration interaction (CI) method in its Lambda-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CH3I relevant to the photodissociation process in its A absorption band. The computed equilibrium geometry for the X A1 ground state, as well as vibrational frequencies for the nu2 umbrella and nu3 symmetric stretch modes, are found to be in good agreement with available experimental data. The 3Q0+ state converging to the excited I(2P1/2o) limit is found to possess a shallow minimum of 850 cm(-1) strongly shifted to larger internuclear distances (RC-I approximately 6.5a0) relative to the ground state. This makes a commonly employed single-exponent approximation for analysis of the CH3I fragmentation dynamics unsuitable. The 4E(3A1) state dissociating to the same atomic limit is calculated to lie too high in the Franck-Condon region to have any significant impact on the A-band absorption. The computed vertical excitation energies for the 3Q1, 3Q0+, and 1Q states indicate that the A-band spectrum must lie approximately between 33,000 and 44,300 cm(-1), i.e., between 225 and 300 nm. This result is in very good agreement with the experimental findings. The lowest Rydberg states are computed to lie at >or=49,000 cm(-1) and correspond to the ...a(1)2n3a1(6sI) leading configuration. They are responsible for the vacuum ultraviolet absorption lines found experimentally beyond the A-band spectrum at 201.1 nm (49,722 cm(-1)) and higher.  相似文献   

17.
Density functional theory calculations (B3LYP and BH&HLYP functionals) of the potential energy surface have been performed to investigate the mechanisms of decalin breakdown, and the Rice-Ramsperger-Kassel-Marcus and transition state theory methods have been used to compute the high-pressure limit thermal rate constants for the new reaction pathways. The new pathways connect decalin to five primary monoaromatic species: benzene, toluene, styrene, ethylbenzene, and xylene. The reactions used for the new routes are carbon-carbon bond cleavage reaction, dissociation reaction, and hydrogen abstraction and addition reactions. A kinetic analysis was performed for pyrolytic conditions, and benzene, toluene, and xylene were identified as major products.  相似文献   

18.
Two analytical representations for the potential energy surface of the F(2) dimer were constructed on the basis of ab initio calculations up to the fourth-order of M?ller-Plesset (MP) perturbation theory. The best estimate of the complete basis set limit of interaction energy was derived for analysis of basis set incompleteness errors. At the MP4/aug-cc-pVTZ level of theory, the most stable structure of the dimer was obtained at R = 6.82 au, theta(a) = 12.9 degrees , theta(b) = 76.0 degrees , and phi = 180 degrees , with a well depth of 716 microE(h). Two other minima were found for canted and X-shaped configurations with potential energies around -596 and -629 microE(h), respectively. Hexadecapole moments of monomers play an important role in the anisotropy of interaction energy that is highly R-dependent at intermediate intermolecular distances. The quality of potentials was tested by computing values of the second virial coefficient. The fitted MP4 potential has a more reasonable agreement with experimental values.  相似文献   

19.
In this paper, the levels and the torsional microstates of hydrogen peroxide are determined from fully optimized ab initio calculations using a nuclear model in one dimension. Calculations have been performed at the MP2 level with the 6-311 G(2df,2pd), 6-31 1+G(2df,2pd), cc-pVTZ and AUG-cc-pVTZ basis sets including polarization orbitals and diffuse functions. The most stable conformation, calculated with the MP2/AUG-cc-pVTZ approach, is a transgauche conformer lying at 67.5° from the trans structure. By using the same level of calculations, the heights of the trans and cis barriers have been determined to be 386.5 and 2643.8 cm−1 in a good agreement with the experimental data. The variational torsional levels split into four components by the tunnelling effect of the barriers. The splitting of the fundamental level caused by the trans barrier has been found to be 11.8683 cm−1, whereas the splitting caused by the cis barrier is insignificant under n=2. Current ab initio energies confirm the experimental assignments and verify the separability of the torsion from the rest of the vibrations. However, the experimental relation of dependence on the torsion of the rotational constants cannot be reproduced in one-dimension and depends on several additional vibrational effects.  相似文献   

20.
Calculated energy and molecular properties of the ground and low-energy excited states of formamide are presented at the ground state geometry. Satisfactory results are obtained except for the 1* energy which remains too high by 1 eV (which is nevertheless a large improvement over previous calculations). The predicted triplet energies lie at 5.4 eV (3 n*) and 5.8 eV (3*).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号