首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Undecyl and phenyl oxazolines were synthesized. They were copolymerized in different mole ratios using methyl nosylate as initiator. A series of di- and triblock copolymers with narrow molecular weight distributions as indicated by GPC were obtained. A three-armed block copolymer was also obtained by using 1,3,5-tris(bromomethyl)benzene as initiator. When the nonpolar undecyl block crystallized as a coating, the critical surface energy approached 21.0 dyn/cm, and the contact angle of water on the surface could be higher than 107°. The melting point increased as the chain length of crystallizable undecyl block increased, and the melting peak on DSC was very sharp when the length was equal to or longer than 25 monomer units. When these copolymers were coated on substrates, the work of adhesion with pressure sensitive adhesives was greatly reduced.  相似文献   

2.
The surface properties and abhesion of both N/Si and U/Si series of random copolymers were studied by contact angle and peel strength measurements. When these copolymers are coated on clean glass slides, the contact angles of water on the polymer films are over 105° for copolymers with less than 50 mol % of Si , and 98-104° for those with more than 50 mol % of Si. All the polymers have similar critical surface energies, 21 dyn/cm (from hydrocarbon probes) and 20 dyn/cm (from EtOH/H2O probes), within the experimental error. This demonstrates that the amide groups in the polymer backbones are buried and all the polymers have methyl surfaces. The copolymers with less than 50 mol % Si (for N/Si copolymers) or 20 mol % (for U/Si copolymers) are stable and show good abhesive properties toward Scotch magic tape at or below 50°C. The peel strengths of Scotch magic tape with the copolymer coated slides rise dramatically as the annealing temperatures approach to the melting points of the polymers.  相似文献   

3.
iPS‐b‐PDMS‐b‐iPS triblock copolymers were prepared by hydrosilylation of vinyl‐terminated isotactic polystyrenes (iPS) with α,ω‐bis(dimethylsilane)‐terminated poly(dimethylsiloxane)s (PDMS). As a function of the molecular weights of the two components, the triblock copolymer composition was varied between 9.0 and 98 wt % iPS. The resulting triblock copolymers remained soluble during block copolymer synthesis due to slow iPS crystallization in solution. At iPS content exceeding 31 wt %, the iPS crystallization was achieved by postpolymerization annealing and melt processing. The triblock copolymers melted above 200 °C with melting temperatures very similar to those of the corresponding iPS homopolymers. Nanostructure and microstructure formation of both amorphous and semicrystalline triblock copolymers were examined by means of light microscopy, atomic force microscopy, and TEM measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The “topological polymer chemistry” of amphiphilic linear and cyclic block copolymers at an air/water interface was investigated. A cyclic copolymer and two linear copolymers (AB‐type diblock and ABA‐type triblock copolymers) synthesized from the same monomers were used in this study. Relatively stable monolayers of these three copolymers were observed to form at an air/water interface. Similar condensed‐phase temperature‐dependent behaviors were observed in surface pressure–area isotherms for these three monolayers. Molecular orientations at the air/water interface for the two linear block copolymers were similar to that of the cyclic block copolymer. Atomic force microscopic observations of transferred films for the three polymer types revealed the formation of monolayers with very similar morphologies at the mesoscopic scale at room temperature and constant compression speed. ABA‐type triblock linear copolymers adopted a fiber‐like surface morphology via two‐dimensional crystallization at low compression speeds. In contrast, the cyclic block copolymer formed a shapeless domain. Temperature‐controlled out‐of‐plane X‐ray diffraction (XRD) analysis of Langmuir–Blodgett (LB) films fabricated from both amphiphilic linear and cyclic block copolymers was performed to estimate the layer regularity at higher temperatures. Excellent heat‐resistant properties of organized molecular films created from the cyclic copolymer were confirmed. Both copolymer types showed clear diffraction peaks at room temperature, indicating the formation of highly ordered layer structures. However, the layer structures of the linear copolymers gradually disordered when heated. Conversely, the regularity of cyclic copolymer LB multilayers did not change with heating up to 50 °C. Higher‐order reflections (d002, d003) in the XRD patterns were also unchanged, indicative of a highly ordered structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 486–498  相似文献   

5.
A new class of liquid‐crystalline (LC) homopolymers of poly{11‐[4‐(3‐ethoxycarbonyl‐coumarin‐7‐oxy)‐carbonylphenyloxy]‐undecyl methacrylate} containing a coumarin moiety as a photocrosslinkable unit with various polymerization degrees and their LC‐coil diblock and LC‐coil‐LC triblock copolymers with polystyrene as the coil segment was synthesized with the atom transfer radical polymerization method. All the homopolymers and block copolymers synthesized here exhibited narrow polydispersities, indicating well‐controlled living polymerization. Differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction confirmed that all the homopolymers and block copolymers exhibit a monolayer smectic A phase. Coumarin moieties in the polymers can be photodimerized under λ > 300 nm light irradiation to yield crosslinked network structures, which improve the thermal stability of a polymer nanostructure because of microphase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2197–2206, 2003  相似文献   

6.
New amphiphilic triblock copoly(2‐oxazoline)s, containing hydrophobic domains with fluorine‐containing blocks, were synthesized. Using microwave radiation as heating source, triblock copolymers with narrow molar mass distributions were obtained by the sequential addition of 2‐ethyl‐2‐oxazoline, 2‐(1‐ethylheptyl)‐2‐oxazoline, and 2‐(2,6‐difluorophenyl)‐2‐oxazoline. The polymers obtained were characterized by size exclusion chromatography, 1H NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). To investigate the incorporation of all three monomers into the triblock copolymers, a model polymer was prepared with shorter blocks exhibiting a suitable length to be measured in the reflector mode of a MALDI‐TOF MS. In addition, kinetic investigations on the homopolymerizations of all monomers were performed in nitromethane at 140 °C, yielding the polymerization rates under these conditions. DSC measurements of poly(2‐(1‐ethylheptyl)‐2‐oxazoline) and poly(2‐(2,6‐difluorophenyl)‐2‐oxazoline)) revealing glass transitions at about 33 and 120 °C, respectively. The thermal analysis of a blend of the two polymers showed two glass transitions revealing demixing, which could be an indicating for the immiscibility of the two components in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
This is a series of articles that deals with fundamental aspects of the effects of the structure of latex particles of acrylic copolymers on their adhesion behavior. Specifically, relationship or analogy between rheological properties and adhesion performance of the acrylic copolymers was demonstrated. The first part of this series concerns the synthesis and characterization of latex particles with desired structures and compositions, and the experimental results of peel adhesion. The second part develops an analogy between the peel adhesion performance of the adhesives and rheological properties of the corresponding copolymers. The third part addresses the generalities and particularities of three major tests for adhesion: peeling, blistering, and spontaneous peeling. Three types of structured latex particles were synthesized by three different emulsion polymerization processes: the first type had a uniform composition over the entire particles with a glass transition temperature (Tg) varying between ?40°C and 0°C, depending upon the compositions of monomers involved in the copolymer; the second type was of core-shell structure. As for the third type, the composition of monomers varied gradually across the particle radii. The glass transition behavior and the dynamic mechanical properties in the solid state of the copolymers confirmed the structures of the corresponding latex particles. On the other hand, the peel adhesion performance of the films of these latex particles varied with the dynamic mechanical properties of the corresponding copolymers. This implies that a correlation could be found between the structure of the latex particles, dynamic mechanical properties in the solid state of the corresponding copolymers, and the peel adhesion performance of the adhesive films. ©1995 John Wiley & Sons, Inc.  相似文献   

8.
A molecular theory for small-angle neutron scattering from polymer mixtures is reviewed and extended to consider multiphase polymer systems such as block copolymers and their blends with homopolymers. Methods are developed for the isolation of scattering functions for individual components in these blends. These methods rely on two contrast-matching techniques: the concept of “composition matching,” where a mixture of deuterium-labeled and protonated species is used to match the contrast of a third component; and the synthesis of “phase-matched” block copolymers, where the contrast of the block copolymer sequences are matched. Methods are discussed specifically for the isolation of single chain and single sequence scattering functions for diblock and triblock copolymers, their blends with homopolymers, and star copolymers.  相似文献   

9.
Biodegradable poly(tert‐butyl acrylate)–poly[(R)‐3‐hydroxybutyrate]–poly (tert‐butyl acrylate) triblock copolymers based on bacterial poly[(R)‐3‐hydroxybutyrate] (PHB) were synthesized by atom transfer radical polymerization. The chain architectures of the triblock copolymers were confirmed by 1H NMR and 13C NMR spectra. Gel permeation chromatography analysis was used to estimate the molecular weight characteristics and lengths of the PHB and poly(tert‐butyl acrylate) blocks of the copolymers. The thermal properties of the copolymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA showed that the triblock copolymers underwent stepwise thermal degradation and had better thermal stability than their respective homopolymers, whereas DSC analyses showed that a microphase‐separation structure was formed only in the triblock copolymers with the longer PHB block. As a similar result, from wide‐angle X‐ray diffraction experimentation, the crystalline phase of PHB could not be seen evidently in the triblock copolymers with the shorter PHB block. The enzymatic hydrolysis of the copolymer films was carried at 37 °C and pH 7.4 in a potassium phosphate buffer with an extracellular PHB depolymerase from Penicillum sp. The biodegradability of the triblock copolymers increased with an increase in the PHB block content. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4857–4869, 2005  相似文献   

10.
嵌段共聚物薄膜淬火形貌与初始化时嵌段共聚物熔体的状态相关,淬火得到的有序形貌有时存在缺陷,而退火则可以消除这些缺陷形成更规整的层状结构,且退火得到的嵌段共聚物分子的均方回转半径等都小于淬火得到的.与淬火比较,退火使高分子链充分松弛,增加了薄膜中有利于提高材料物理力学性能的桥键含量.不同于受限自由表面间的对称二嵌段共聚物首先在表面区域形成有序结构,三嵌段共聚物则在薄膜内部先形成有序的层状结构.  相似文献   

11.
We demonstrate a fully conjugated donor–acceptor–donor (D–A–D) triblock copolymer, PBDTT–PNDIBT–PBDTT, which contains PBDTT as the donor block and PNDIBT as the acceptor block. The polymer was synthesized by end‐capping each block with a reactive unit, followed by condensation copolymerization between the two blocks. The physical, optical, and electrochemical properties of the polymer were investigated by comparing those of donor‐ and acceptor‐homopolymers (i.e., PBDTT and PNDIBT), which are the oligomeric monomers, and their blends. On using the newly synthesized block copolymer, ambipolar charge transport behavior was observed in the corresponding thin‐film transistor, and the behavior was compared to that of blend film of donor‐ and acceptor‐homopolymers. Owing to the presence of donor and acceptor blocks in a single polymer chain, it was found that the triblock copolymer can store two‐level information; the ability to store this information is one of the most intriguing challenges in memory applications. In this study, we confirmed the potential of the triblock copolymer in achieving distinct two‐stage data storage by utilizing the ambipolar charge trapping phenomenon, which is expected in donor and acceptor containing random and block copolymers in a thin‐film transistor. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3223–3235  相似文献   

12.
In this study, the structure–property relationships for a series of statistical 2‐nonyl‐2‐oxazoline (NonOx) and 2‐phenyl‐2‐oxazoline (PhOx) copolymers were investigated for the first time. The copolymerization kinetics were studied and the reactivity ratios were calculated to be rNonOx = 7.1 ± 1.4 and rPhOx = 0.02 ± 0.1 revealing the formation of gradient copolymers. The synthesis of a systematical series of NonOx–PhOx copolymers is described, whereby the amount of NonOx was increased in steps of 10 mol %. The thermal and surface properties were investigated for this series of well‐defined copolymers. The thermal properties revealed a linear decrease in glass transition temperature for copolymers containing up to 39 wt % NonOx. Furthermore, the melting temperature of the copolymers containing 0 to 55 wt % PhOx linearly decreased most likely due to disturbance of the NonOx crystalline domains by incorporation of PhOx in the NonOx part of the copolymer. The surface energies of spincoated polymer films revealed a strong decrease in surface energy upon incorporation of NonOx in the copolymers due to strong phase separation between NonOx and PhOx allowing the NonOx chains to orient to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6433–6440, 2009  相似文献   

13.
Surface and adhesion properties of poly(imide-siloxane) block copolymers   总被引:1,自引:0,他引:1  
Poly(imide-siloxane) (PIS) block copolymers were studied with respect to their structure surface and adhesive properties relationship. The study of the morphology of PIS copolymers characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) shows a growth of the surface roughness by increase of the content of siloxane. With an increase of siloxane content Attenuated Total Reflection-Fourier Transform Infra Red (ATR-FTIR) spectroscopy detected a growth of the absorption bands near 1100 cm−1 characteristic for siloxane group, and a decrease at 1700-1800 cm−1 corresponding to carbonyl groups of polyimide moieties. The X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight-Secondary Ion Mass Spectroscopy (TOF-SIMS) analysis showed an excessive increase of Si on surface of the copolymer. The relatively small amount of siloxane in PIS block copolymer, 10-20 wt.%, increased significantly the contact angle of water due to the surface hydrophobization of the copolymer and the significant decrease of the surface energy of the PIS copolymer has been observed. The polar component of surface energy shows an intense decrease, whereas its dispersive component increases. The increase of the surface hydrophobicity reduced the peel as well as shear strengths of epoxy adhesive joints. The relationship between peel strength of adhesive joint to epoxy and polar fraction of PIS copolymer can be described by exponential decay dependence.  相似文献   

14.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Symmetric photosensitive fully liquid-crystalline triblock copolymers are synthesized by pseudo-living reversible addition-fragmentation chain-transfer radical polymerization for the first time. The polymerization of 3-[methyl(phenyl)amino]propyl acrylate mediated by three different symmetric trithiocarbonates with various leaving groups is studied. It is shown that reversible addition-fragmentation chain-transfer agents make it possible to synthesize narrowly dispersed homopolymers with controlled molecular masses. Poly[(3-[methyl(phenyl)amino]propyl acrylate) trithiocarbonates] are used as polymeric reversible addition-fragmentation chain-transfer agents in the block copolymerization of the phenyl benzoate acrylic monomer. The chemical modification of block copolymers yields desirable photosensitive triblock copolymers containing azobenzene groups. The effect of the molecular structure of triblock copolymers on their phase behavior and thermal properties is examined.  相似文献   

16.
Short-term hydrolytic and enzymatic degradation of poly(ε-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FTIR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 °C, where an effective degradation of block copolymers was observed.  相似文献   

17.
An improved technique for casting highly oriented films of block copolymers from solutions subjected to flow is presented. Polymer solutions were rolled between two counter-rotating adjacent cylinders while at the same time the solvent was allowed to evaporate. As the solvent evaporated, the block copolymers microphase separated into globally oriented structures. Using this method known as ‘roll-casting’ we present in this paper a study of the morphology of polystyrene-polybutadiene-polystyrene (PS/PB/PS) triblock copolymer cast with and without additional high molecular weight homopolymers. The pure copolymer films consisted of polystyrene cylinders assembled on a hexagonal lattice in a polybutadiene matrix in a near single-crystal structure. Blends of copolymer with high molecular weight polystyrene and/or polybutadiene, phase separated into ellipsoidal regions of homopolymer embedded in an oriented block copolymer matrix. Annealing the films resulted in conversion of the homopolymer regions to spheres accompanied by some misalignment of the copolymer microdomains. The morphology of these films as revealed by TEM is discussed. A brief discussion of the flow field that develops in the experimental system is also presented and its similarity to the flow field of our previous work is shown. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Poly(isoprene-block-methyl methacrylate) (PI-b-PMMA) block copolymers with different block ratios have been used to generate nanostructures both in thin films and by nanostructuring a thermosetting epoxy system. Obtained morphologies have been analyzed in terms of atomic force microscopy. The nanostructuring of thin films was carried out by thermal and solvent vapor annealing, in which the copolymer films were exposed to acetone vapors, selective solvent for methyl methacrylate (PMMA) block. By solvent vapor annealing thin films of both copolymers self-assembled into a hexagonally packed cylindrical morphology. Thermal annealing was carried out above the glass transition temperature of both blocks, obtaining worm-like and lamellar morphologies, depending on the block ratio. One of the copolymers has also been used for nanostructuring an epoxy thermosetting system. Morphologies consisting of spherical-shaped PI domains dispersed in a continuous epoxy matrix in which PMMA remained miscible were obtained, independently of the copolymer amount.  相似文献   

19.
The solution properties of random and block copolymers based on 2‐ethyl‐2‐oxazoline (EtOx) and 2‐nonyl‐2‐oxazoline (NonOx) were investigated in binary solvent mixtures ranging from pure water to pure ethanol. The solubility phase diagrams for the random and block copolymers revealed solubility (after heating), insolubility, dispersions, micellization as well as lower critical solution temperature (LCST) and upper critical solution temperature behavior. The random and block copolymers containing over 60 mol % pNonOx were found to be solubilized in ethanol upon heating, whereas the dissolution temperature of the block copolymers was found to be much higher than for the random copolymers due to the higher extent of crystallinity. Furthermore, the block copolymer containing 10 mol % pNonOx exhibited a LCST in aqueous solution at 68.7 °C, whereas the LCST for the random copolymer was found to be only 20.8 °C based on the formation of hydrophobic microdomains in the block copolymer. The random copolymer displayed a small increase in LCST up to a solvent mixture of 9 wt % EtOH, whereas further increase of ethanol led to a decrease in LCST, which is probably due to the “water‐breaking” effect causing an increased attraction between ethanol and the hydrophobic part of the copolymer. In addition, the EtOx‐NonOx block copolymers revealed the formation of micelles and dynamic light scattering demonstrated that the micellar size is increasing with increasing the ethanol content due to the enhanced solubility of EtOx. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 515–522, 2009  相似文献   

20.
In this work, self‐assembly method was used to improve the dielectric constant of triblock copolymers. A series of ABA triblock copolymers with a defined length of poly(n‐butyl acrylate) (PBA, B block) segment and different lengths of liquid crystalline (LC) poly[11‐(4‐cyano‐4′‐biphenoxy)undecyl methacrylate] (P11CBMA, A block) segments were synthesized by using the atom transfer radical polymerization method. The well‐defined triblock copolymers P11CBMAmb‐PBAnb‐P11CBMAm possess three different B/A ratios (n = 50, m = 17, 43, 53). Due to the supramolecular cooperative motion effect, the copolymers can form worm‐like microstructure (WLC = 52.8%), cylinder‐like nanostructure with P11CBMA phase embedded in PBA matrix (WLC = 73.9%), and wide stripe structure with LC domains distributed unevenly in a continuous PBA matrix (WLC = 77.7%) after annealed at 160°C (above Ti) under N2 for 24 h, respectively. In order to study the influence of microphase separated morphology of triblock copolymer on the dielectric properties, solvent annealing was also used to develop various nanostructures. After thermal or solvent annealing, the dielectric constants of block copolymers increased dramatically while their loss factors remained the same. For different block copolymers, the dielectric constants increased with the increase of the LC block length. For diverse treatments, dielectric permittivities of samples varied widely with different nanostructures. The results show that the dielectric constants of block copolymers could be tuned by the block ratios and the self‐assembled microstructures. These findings will inspire researchers using self‐assembly method to design and develop novel flexible materials with high dielectric permittivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号