首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of the 2,2′-, 2,4′-, 4,4′-dibenzyldiisocyanate (2,2′-, 2,4′-, 4,4′-DBDI) with n-butanol in benzene has been studied. The concentrations of all species were monitored by using high performance liquid chromatography (HPLC). The reactivity of 4,4′-DBDI is similar to that of 4,4′-diphenylmethanediisocyanate (4,4′-MDI). Very strong intramolecular catalytic effects were noticed in the case of 2,2′-DBDI, probably due to the variable molecular geometry. These effects are responsible for the whole reaction pattern. The 2,4′-DBDI NCO ortho and para groups reactivities are different and comparable to that of 2,4-toluylenediisocyanate (2,4-TDI).  相似文献   

2.
Treatment of several substituted benzils [3,3′- and 4,4′-dimethyl-; 2,2′-, 3,3′- and 4,4′-dichloro-; 3,3′-dibromo-; 4-(N,N-dimethylamino)-] with an excess of chlorosulfonic acid gave the corresponding 3-chloro-2-phenylbenzofuran disulfonyl dichlorides. Disubstitution was confirmed by microanalytical and spectral data for the corresponding bis(N,N-dimethylaminsulfonamides). The positions of electrophilic substitution were not confirmed with 3,3′-dimethyl-, 2,2′- and 3,3′-dichlorobenzils. With 4,4′-dichlorobenzil, a smaller amount of chlorosulfonic acid enabled the isolation of 3,6,4′-trichloro-2-phenylbenzofuran-5-sulfonyl chloride, which was identified by X-ray analysis of the N,N-dimethylsulfonamide. The cyclisation failed with 3,3′-dimethoxy-, and 3,3′- and 4,4′-dinitrobenzils. The results have been interpreted mechanistically.  相似文献   

3.
2,7-Dimethyl-4,5,9,10-tetraazapyrene (VI) was synthesized by the catalytic hydrogenation of 4,4′-dimethyl-2,2′,6,6′-tetranitrobiphenyl (IIa) with W-2 Raney nickel in the presence of alkali. 4,4′-Dicarbomethoxy-2,2′,6,6′-tetranitrobiphenyl (IIc) under similar conditions in neutral medium gave 4,4′-dicarbomethoxy-2,2′,6,6′-tetraaminobiphenyl (IV) which on oxidation gave 2,7-dicarbomethoxy-4,5,9,10-tetraazapyrene (V). 2,7-Dimethyl-, 2,7-dimethoxy-, and 2,7-diacetamido-4,5,9,10-tetraazapyrene di-N-oxides (III a,b,c) were obtained by catalytic reduction of the corresponding 4,4′-disubstituted-2,2′,6,6′-tetranitrobiphenyls with W-7 Raney nickel in the presence of alkali. Compound VI on oxidation with hydrogen peroxide gave the di-N-oxide (IIIa).  相似文献   

4.
Polymers were prepared from 4,4′-diphenoxydiphenylsulfone, isophthaloyl dichloride, and bis-p-phenoxyphenyl-4,4′-(2,2′-dibromodiphenyl)ketone, 2,2′-dibromodiphenyl-4,4′-dicarbonyl dichloride, or bis-p-phenoxyphenyl-4,4′-(2,2′-diphenylethynyldiphenyl)ketone in Friedel-Crafts type of polymerization. Bromine groups were subsequently replaced with phenylacetylene residues, and the polymers were cured at high temperatures, with the apparent formation of benzanthracene linkages. Cured polymers exhibited higher softening points, decreased solubilities, and, in some instances, higher melting points than their uncured precursors. Significant weight losses occurred during isothermal aging tests.  相似文献   

5.
Some members of four series of polyesters were synthesized by the direct polycondensation of two types of dicarboxylic acids (4,4′-dicarboxy-α,ω-diphenoxyalkanes and 4,4′-dicarboxy-α,ω-dibenzoyloxyalkanes) with two types of bisphenols (4,4′-dihydroxy-α,ω-diphenoxyalkanes and 4,4′-dihydroxy-α,ω-dibenzoyloxyalkanes) using tosyl chloride in pyridine in the presence of N, N-dimethylformamide. The 1H-NMR spectra of the polymers synthesized showed that these polymers have an ordenated structure. The mesogenic properties of these polymers were studied by optical microscopy and differential scanning calorimetry. Many of the polymers show nematic mesomorphism.  相似文献   

6.
A series of novel dialdehydes as new monomers, 4,4′-diformyl-α,ω-diphencarbonylalkane, 4,4′-diformyl-3,3′-methoxy-α,ω-diphencarbonylalkane, and 4,4′-diformyl-3,3′-ethoxy-α,ω-diphencarbonylalkane, was prepared from aliphatic diacid chloride with p-hydroxybenzaldehyde, vanillin, and 3-ethoxy-4-hydroxybenzaldehyde, respectively. A series of poly(amide-azomethine-ester)s was prepared by condensation of 4,4′-diaminoanilide with 4,4′-diformyl-α,ω-α,ω-diphencarbonylalkane, 4,4′-diformyl-3,3′-methoxy-α,ω-diphencarbonylalkane, and 4,4′-diformyl-3,3′-ethoxy-α,ω-diphencarbonylalkane, respectively. Their thermotropic liquid crystalline properties were examined by DSC microscope observations. In most cases, the mesophase extends up to ca. 288–380°C, where thermal decomposition prevents further observation.  相似文献   

7.
Two isomers of commercial 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (4,4′-BPADA), that is, 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,4′-BPADA) and 3,3′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,3′-BPADA), were synthesized through aromatic nucleophilic substitution from nitrophthalonitrile and bisphenol A. 3,4′-BPADA was first synthesized from two intermediates, that is, 3-(4-[4-hydroxyphenylisopropylidene] phenoxy) phthalonitrile (3-BPADN) and 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalonitrile) (3,4′-BPATN). The corresponding three series of polyetherimides (PEIs) were prepared with two representative aromatic diamines (4,4′-oxydianiline and m-phenylenediamine (m-PDA)) via two-step procedure and chemical imidization. Isomeric polyimides showed Tgs from 206 to 256°C in nitrogen and Td5%s from 488 to 511°C in argon, good mechanical properties (tensile moduli of 2.3–3.3 GPa, tensile strengths of 70–96 MPa, and elongations at break of 3.2%–5.1%), and good solubility. With the introduction of 3-substituted phthalimide unit, PEIs displayed higher Tg values, lower strengths and elongations, better solubility and larger d-spacings. The rheological properties of thermoplastic polyimide resins based on the BPADA isomers were investigated, which showed that polyetherimide PEI-3b derived from 3,3′-BPADA and m-PDA had the lowest melt viscosity among the isomers, indicating that the melt processibility had been greatly improved.  相似文献   

8.
Two new supramolecular compounds [M(4,4′-bipy)2 (H2O)4] ·?(4,4′-bipy)2 ·?(3,5-daba)2 ·?8H2O (M=Zn(1) or Mn(2), 4,4′-bipy =?4,4′-bipyridine, 3,5-daba =?3,5-diaminobenzoic acid anion) were synthesized and characterized by elemental analysis and X-ray crystal diffraction. In [M(4,4′-bipy)2(H2O)4]2+, the M(II) is coordinated by two nitrogen atoms from two 4,4′-bipy molecules and four oxygen atoms from four waters to form an octahedral configuration. There exist uncoordinated 4,4′-bipy molecules, 3,5-diaminobenzolate counterions and water guests in the compounds. The 3D structures of the title supramolecular compounds are constructed by rich hydrogen bonds among [M(4,4′-bipy)2(H2O)4]2+, uncoordinated 4,4′-bipy molecules, water molecules and 3,5-daba, containing a diverting hexa-member water ring.  相似文献   

9.
3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (4,4′‐carbonyldiphathalic anhydride) was reacted with L ‐leucine in a mixture of acetic acid and pyridine (3 : 2), and the resulting imide‐acid [N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid] was obtained in quantitative yield. The compound was converted to the N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid chloride by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride with several aromatic diamines such as 4,4′‐diaminodiphenyl methane, 2,4‐diaminotoluene, 4,4′‐sulfonyldianiline, p‐phenylenedi‐amine, 4,4′‐diaminodiphenylether, and m‐phenylenediamine was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as O‐cresol. The polymerization reactions proceeded rapidly compared with the conventional solution polycondensation and were completed within 6 min, producing a series of optically active poly(amide‐imide)s with a high yield and an inherent viscosity of 0.37–0.57 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 177–186, 2001  相似文献   

10.
Viologens that bore a terminal vinyl group were synthesized by four sequences of reactions: (1) N-vinylbenzyl-N′-n-propyl-4,4′-bipyridinium bromide chloride (V) was synthesized by the reaction of 4-(4′-pyrodyl)-N-n-propyl pyridinium bromide (III) with vinylbenzyl chloride; (2) N-β-acrylamidoethyl-N′-n-propyl-4,4′-bipyridinium dibromide (IX) was synthesized by the Menschutkin reaction of III with 2-aminoethyl bromide hydrobromide and subsequent reaction with acryloyl chloride; (3) N-β-methacryloyloxyethyl-N′-n-propyl-4,4′-bipyridinium dibromide and its analogs (XI) were synthesized by the reactions of III with the corresponding acyloxyalkyl bromides; and (4) N-vinyloxycarbonylmethyl-N′-n-propyl-4,4′-bipyridinium bromide chloride (XIII) was synthesized by the reaction of III with vinyl chloroacetate. With the exception of monomer XIII in which hydrolysis in large extent was observed during attempted polymerization, the synthesized monomers polymerized smoothly in aqueous solutions by a conventional radical procedure. Comparisons of the absorption peaks of the radical cations produced by reductions in aqueous solutions with those produced in films by ultraviolet (UV) irradiation indicate that the radical cations of polymers are associated intramolecularly in aqueous solutions.  相似文献   

11.
3,3′‐Diamino‐4,4′‐bifurazane ( 1 ), 3,3′‐diaminoazo‐4,4′‐furazane ( 2 ), and 3,3′‐diaminoazoxy‐4,4′‐furazane ( 3 ) were nitrated in 100 % HNO3 to give corresponding 3,3′‐dinitramino‐4,4′‐bifurazane ( 4 ), 3,3′‐dinitramino‐4,4′‐azofurazane ( 5 ) and 3,3′‐dinitramino‐4,4′‐azoxyfurazane ( 6 ), respectively. The neutral compounds show very imposing explosive performance but possess lower thermal stability and higher sensitivity than hexogen (RDX). More than 40 nitrogen‐rich compounds and metal salts were prepared. Most compounds were characterized by low‐temperature X‐ray diffraction, all of them by infrared and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and by differential scanning calorimetry (DSC). Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high energetic performances of the nitraminofurazanes as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored. Additionally the general toxicity of the anions against vibrio fischeri, representative for an aquatic microorganism, was determined.  相似文献   

12.
Two silicon-containing acid dichlorides, bis(4-chlorocarbonylphenyl)dimethylsilane and bis(4-chlorocarbonylphenyl)diphenylsilane, were synthesized and reacted with 1,3-phenylene diamine, 1,4-phenylene diamine, 4,4′-diaminodiphenyl, 4,4′-diaminodiphenyl methane 4,4′-diaminodiphenyl ether, and 4,4′-diaminodiphenyl sulfone in the preparation of 12 structurally different high molecular weight aromatic polyamides. A low-temperature interfacial polycondensation technique was used. Most of the polyamides formed tough, transparent, flexible films and were characterized by solubility, solution viscosity, infrared spectroscopy (IR), and glass transition temperature (Tg). The thermal behavior of these aramids was studied by dynamic thermogravimetry. The effect of diamine and acid dichloride structure on the aramids properties is also discussed.  相似文献   

13.
3,3′‐Dichloro‐N,N′‐biphthalimide (3,3′‐DCBPI), 3,4′‐dichloro‐N,N′‐biphthalimide (3,4′‐DCBPI), and 4,4′‐dichloro‐N,N′‐biphthalimide (4,4′‐DCBPI) were synthesized from 3‐ or 4‐chlorophthalic anhydrides and hydrazine in glacial acetic acid. The yield of 3,3′‐DCBPI (90%) was much higher than that of 4,4′‐DCBPI (33%) because of the better stability of the intermediate, 3‐chloro‐N‐aminophthalimide, and 3,3′‐DCBPI. A series of hydrazine‐based polyimides were prepared from isomeric DCBPIs and 4,4′‐thiobisbenzenethiol (TBBT) in N,N‐dimethylacetamide in the presence of tributylamine. Inherent viscosity of these polymers was in the range of 0.51–0.69 dL/g in 1‐methyl‐2‐pyrrolidinone (NMP) at 30 °C. These polyimides were soluble in 1,1,2,2‐terachloroethane, NMP, and phenols. The 5% weight‐loss temperatures (T5%s) of the polymers were near 450 °C in N2. Their glass‐transition temperatures (Tgs) determined by dynamic mechanical thermal analysis and differential scanning calorimetry increased according to the order of polyimides based on 4,4′‐DCBPI, 3,4′‐DCBPI, and 3,3′‐DCBPI. The hydrolytic stability of these polymers was measured under acid, basic, and neutral conditions and the results indicated that the order was 3,3′‐DCBPI/TBBT > 3,4′‐DCBPI/TBBT > 4,4′‐DCBPI/TBBT. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4933–4940, 2007  相似文献   

14.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Abstract

Three novel dicarboxylic acids, bis-4,4′-[N-4(4′-hydroxycarbonyl phenyleneoxy) phthalimido] diphenyl sulfone, bis-4,4′-[N-4(4′-hydroxycarbonyl phenyleneoxy) phthalimido] diphenyl methane, and bis-4,4′-[N-4(4′-hydroxycarbonyl phenyleneoxy) phthalimido] diphenyl ether, were synthesized, and several polyesterimides were prepared from diacid chlorides and bisphenols by solution polycondensation. The polymers were obtained in 65–88% yield and had inherent viscosities in the 0.18 to 0.64 dL/g range. The polymers were characterized by IR, elemental analysis, x-ray, TGA, DSC, and solubility tests. All the polymers were readily soluble in polar aprotic solvents and had a 10% weight loss temperature above 375°C in nitrogen.  相似文献   

16.
A secondary building unit (SBU), [Ni(2,2′-bipy)(5-npa)(H2O)] n [where 2,2′-bipy = 2,2′-bipyridine, 5-npa = 5-nitroisophthalic dianion], was synthesized as starting material of a polystep reaction. A ladderlike complex (LLC) Ni(II) coordination polymer, {[Ni(2,2′-bipy)(5-npa)(4,4′bipy)0.5]·(H2O)} n , was constructed by polystep reaction using this SBU. In LLC, two SBUs were cross-linked by 4,4′-bipy [where 4,4′-bipy = 4,4′-bipyridine] forming a 1-D ladderlike structure. The magnetic properties of the LLC and SBU are discussed.  相似文献   

17.
This article describes the synthesis of N,N′-bis(3,3′-maleimidophenyl) sulfone (S) and its Michael addition products with (4,4′-diaminodiphenyl) methane (S-M), 4,4′-diaminodiphenyl ether (S-E), (3,3′-diaminodiphenyl) sulfone (S-DDSm), (4,4′-diaminodiphenyl) sulfone (S-DDSp), (3,3′,3″-tris aminophenyl) phosphine oxide (S-TAP), and 9,9-bis(p-aminophenyl) fluorene (S-B). Curing behavior of these bisimides was investigated by differential scanning calorimetry. Activation energy of curing reaction was determined by using isothermal and multiple heating rate method. Thermal stability of bisimides was evaluated by thermogravimetric analysis. Better char yields were obtained in S-TAP resins.  相似文献   

18.
Cyclization were occurred via the coupling reactions of some mercuric chloride derivatives of sydnone with LiPdCl3-CuCl2. A unique six-membered ring, 3,3′-ethylene-4,4′-bissydnone, was obtained by the cyclization reation of 1,2-di[3-(4-chloromercuric)sydnonyl]ethane. However, the seven-membered 3,3′-trimethylene-4,4′-bissydnone and 1,3-di[3-(4-chloro)sydnonyl]-propane were obtained from the corresponding mercuric chlroide of sydnone. Onyl substitution reaction took place when 4,4′-di[3-(4-chloromercuric)sydnonyl]biphenyl, 4,4′-di[3-(4-chloromercuric)sydnonyl]benzene, di(p-[3-(4-chloromercuric)sydnonyl]-phenyl}methane and, di(p-[3-(4-chloromercuric)sydnonyl]phenyl]ether were treated using the same process.  相似文献   

19.
A study was conducted of the effects of meta-para isomerism on the synthesis and properties of aromatic bismaleimides and polyaspartimides. Three isomers, 3,3′-, 3,4′-, and 4,4′-diaminodiphenylmethanes (methylenedianilines), were used to prepare three isomeric bismaleimides. The bismaleimides then were reacted with their respective isomeric diamines in m-cresol solution to give a series of isomeric polyaspartimides. The properties of each of the isomeric series were measured and compared. Strong flexible films were solvent cast from the two polyaspartimides derived from the 3,4′- and 4,4′-diamines and their respective bismaleimides. Tensile properties of the films from the 3,4′-diamine/3,4′-bismaleimide combination polyaspartimide were equivalent to those from the 4,4′-diamine-derived polymer. That finding, together with that polymer's lower softening temperature and the nonmutagenic nature of the 3,4′-diamine monomer, suggested a potential usefulness for 3,4′-diaminodiphenylmethane as a replacement for 4,4′-diaminodiphenylmethane in addition polyimides.  相似文献   

20.
Poly-4,4′-oxydiphenylenesulfonyl and poly-4,4′-methylenediphenylenesulfonyl were synthesized by an electrophilic substitution polymerization of the arylene monosulfonyl chloride monomers. The glass-transition temperatures Tg of these polymers were determined by calorimetric and dynamic mechanical measurements, and the number-average molecular weights were determined by vapor-pressure osmometry. Both polymers were found to have the same Tg at equivalent molecular weight; the limiting value at high molecular weight is 238°C. Both polymers have two dynamic mechanical relaxation peaks at temperatures far below Tg. One is in the neighborhood of 0°C, and the other is at ?110°C. Plausible origins for these relaxations, and the absence of any near 0°C in poly(4,4′-isopropylidenediphenylene-co-4,4′-sulfonyldiphenylene dioxide), are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号