首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures of Charge-Perturbed or Sterically Overcrowded Molecules. 16. Tetracyanoethylene Sodium Dimethoxyethane The Single crystal structure of [(NC)2C? C(CN)2?·Na⊕(H3CO? CH2CH2? OCH3)]∞ reveals two formula units within the triclinic (P1 ) unit cell. The tetracyanoethylene radical anions are arranged along parallel double layers, which are shifted relative to each other, and in between which are interspersed the sodium counter cations and their dimethoxyethane ligands. The distances within the double layers amount to 300 pm and the ones between them to 385 pm. The six-fold coordinated Na⊕ centers are surrounded by four radical anions with contact distances Na…?N between 250 and 254 pm as well as by a twofold solvent ligand with Na…?O of 238 and 241 pm. Due to the electron transfer to the acceptor molecule, its (NC)2C-halves twist by 8° and the bond lengths of the N?C? C subunits, bent by each 3°, are shortened up to 2 pm. The structural parameters are compared to those of the analogous potassium salt [TCNE?KDME], of the dianion , of the sodium salts [(NC)3C?Na]∞ as well as [(NC)2C? C(CHCH)2? C(CN)2?Na] and, in addition, are discussed based on geometry-optimized MNDO calculations.  相似文献   

2.
Structures and Molecular Properties of Charge-Pertubed Molecules. 2, 3-Diphenylquinoxaline Radical Anions in Solution and in Crystals The Na⊕ and K⊕ radical-ion salts of 2, 3-diphenylquinoxaline seem to be (according to a structural database search) among the first ones of N-heterocyclic radical anions in crystals. The one-electron reduction in aprotic 1, 2-dimethoxyethan (DME) solution at metal mirrors and the crystallization under Ar have been preceded by cyclovoltammetric (CV) and ESR/ENDOR measurement. The first electron insertion at ?1.63 V proves to be reversible, whereas the irreversible second step, which is accompanied by an overcrossing of the CV line, can be rationalized by an ‘ECE-DISP’ mechanism via a dianion redox disproportionation. The ENDOR spectrum resolves four 1H couplings and allows to simulate the ESR spectrum including the 14N hyperfine splittings. Both dark-blue single crystals of the radical ion salts $[2,3{\rm - diphenylquinoxaline}^{{.} \ominus} {\rm Met}^ \oplus ({\rm DME})]^.$ show unexpected similarities for Met⊕ = Na⊕, K⊕ despite the 36-pm difference in their ionic radii. The largest structural changes inflicted by the one-electron reduction of the N-heterocyclic molecule are observed in the vicinity of the N-centers bearing the highest effective nuclear charge. The DME-chelated metal cations coordinate at the N electron pairs and form Met⊕(DME)-bridged polymer chains of the radical anion, which are differently ondulated in the Na⊕ and K⊕ radical anion salts. The take-home lesson suggests that many more N-heterocyclic molecules might be analogously reduced under optimized conditions and isolated as single crystals.  相似文献   

3.
Titanium Tetrafluoride – a Surprising Simple Column Structure For the first time single crystals of TiF4 have been obtained by solvothermal decomposition of (O2)2Ti7F30 in anhydrous HF. The colourless, transparent needles crystallize orthorhombic in spacegroup Pnma–D (No. 62) with a = 2 281.1, b = 384.8, c = 956.8 pm, Z = 12. The new type of structure is dominated by isolated columns of corner-linked TiF6-octahedra.  相似文献   

4.
Photoelectron Spectra and Molecular Properties. 133. Trifluoromethyldisulfane and Derivates F3CSSX (X?CF3, F, Cl, Br) The He(I) photoelectron spectra of trifluoromethyldisulfane F3CSSH and its derivatives F3CSSX (X?CF3, F, Cl, Br) are assigned by Koopmans correlations, IE = ?ε, with MNDO eigenvalues and by radical cation state comparison. Of special interest are the n/n splittings, which amount to 1.15 eV F3C? SS? F or 0.87 eV in F3? SS? Cl, and the dependance of which on the dihedral angle ω(XS? SX), on the SS bond length and on the acceptor effect of the F3C substituents is discussed.  相似文献   

5.
Crystal and Molecular Structure of SbI3 · 9S3 (9S3 = 1.4.7-Trithiacyclononane) . SbI3 forms a 1:1 adduct with 1.4.7-trithiacyclononane. The crystal structure exhibits discrete complexes with a distorted octahedral coordination of antimony(III). In comparison with molecular SbI3 the Sb? I distances are elongated from 271.9 to 290.4 pm (mean). The mean value of the Sb? S distances is 287.5 pm. The planes through iodine and sulfur atoms, respectively, are nearly coplanar. There is no significant stereochemical influence of the Sb(III) lone pair.  相似文献   

6.
用电解法制备了有机-无机自由基盐(DBTTF)6PMo12O40·2H2O.用红外光谱、电子光谱和电子自旋共振谱进行了表征,测定了其磁化率、导电性和单晶的晶体结构,该晶体属三斜晶系,P1空间群,晶胞参数为a=1.378 7(7)nm,b=1.420 4(2)nm,c=1.570 2(2)nm,α=104.570(8)°,β=103.41(2)°,γ=95.80(2)°,V=2.853(2)nm3,Z=1,Dc=2.142 Mg·m-3,R=0.072 7.  相似文献   

7.
The Metal-Rich Titanium Selenide Ti9Se2 The new compound Ti9Se2 has been prepared as hitherto most metal-rich phase in the system titanium-selenium. It crystallizes in the orthorhombic space group Pbam (No. 55) with a = 691.7(2), b = 1 550.5(9), c = 345.4(2) pm. The structure consists of [Ti9]-strings which are described within the concept of condensed clusters. The Se atoms are coordinated by tricapped trigonal prisms of Ti atoms.  相似文献   

8.
Investigations into Tin(IV) Alkoxides. I. Crystal and Molecular Structure of Tin(IV)-isopropoxide-Isopropanol Solvate, Sn(OiPr)4 · i-PrOH The isopropanol complex of tin(IV)-isopropoxide has been prepared by the reaction of tin tetrachloride with sodium isopropoxide. The compound forms colourless, moisture sensitive crystals, which in dry air easily release the coordinated solvent molecules. The crystal and molecular structure of Sn(OiPr)4 · i-PrOH has been determinated by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/c with a = 1174.2(5), b = 1428.5(3), c = 1234.1(3) pm, β = 95.37(1)° and Z = 4. The crystal structure consists of discrete, dimeric molecules in which the two tin atoms are bridged by two alkoxide groups. The octahedral coordination sphere of each tin atom is completed by one solvent molecule which, in addition, forms one hydrogen bridge to an alkoxide group of the neighboring tin atom.  相似文献   

9.
10.
On Novel Oxoruthenates of the 6 L-Perovskite Type: Ba3SrRu2?xTaxO9 (x = 0.8 and 1.4) with a Comment on Ba3CaRu2O9 Single crystals of the phases Ba3SrRu2?xTaxO9 [(I): x = 0.8 and (II): x = 1.4] and the compound (III): Ba3CaRu2O9 were prepared by a BaCl2 flux and investigated by X-ray methods. (I)–(III) crystallizes with hexagonal symmetry space group P6 2c with lattice constants: (I) a = 6.003 Å; c = 15.227 Å; (II) a = 5.988 Å; c = 15.220 Å and (III) a = 5.891 Å; c = 14.571 Å. The crystal structures of these substances corresponds to the 6 layer perovskites with the stacking sequence (hcc)2. All of them show a so far not described slightly distorted oxygen framework caused by the Sr2+ and Ca2+ ions.  相似文献   

11.
The crystal structures of four substituted‐ammonium dichloride dodecachlorohexasilanes are presented. Each is crystallized with a different cation and one of the structures contains a benzene solvent molecule: bis(tetraethylammonium) dichloride dodecachlorohexasilane, 2C8H20N+·2Cl·Cl12Si6, (I), tetrabutylammonium tributylmethylammonium dichloride dodecachlorohexasilane, C16H36N+·C13H30N+·2Cl·Cl12Si6, (II), bis(tetrabutylammonium) dichloride dodecachlorohexasilane benzene disolvate, 2C16H36N+·2Cl·Cl12Si6·2C6H6, (III), and bis(benzyltriphenylphosphonium) dichloride dodecachlorohexasilane, 2C25H22P+·2Cl·Cl12Si6, (IV). In all four structures, the dodecachlorohexasilane ring is located on a crystallographic centre of inversion. The geometry of the dichloride dodecachlorohexasilanes in the different structures is almost the same, irrespective of the cocrystallized cation and solvent. However, the crystal structure of the parent dodecachlorohexasilane molecule shows that this molecule adopts a chair conformation. In (IV), the P atom and the benzyl group of the cation are disordered over two sites, with a site‐occupation factor of 0.560 (5) for the major‐occupied site.  相似文献   

12.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

13.
Ternary Hydroxides. I. Synthesis, Structure, and Properties of Li2[Sn(OH)6] · 2 H2O Colourless crystals of Li2[Sn(OH)6] · 2 H2O were synthesized by reaction of SnCl4 with LiOH in aqueous solution. The crystal structure was determined from single crystal data. Li2[Sn(OH)6] · 2 H2O: monoclinic, P21/n (Nr. 14), a = 502.3(1), b = 692.3(1), c = 1020.2(3) pm, β = 99.78(1)°, V = 349.6(2) · 106 pm3, Z = 2, R/Rw = 0.0192/0.0472, N(I) > 2σ(I) = 1527, N(Par.) = 54. Within the crystal structure only slightly distorted octahedrally [Sn(OH)6]2? ions are bonded via hydrogen bonds with water molecules forming layers, which themselve are linked by tetrahedrally coordinated Li ions; the structure is in accordance with the IR-data and the results of the 119Sn solid state NMR-spectroscopy; the hydrat water is eliminated at 117.1°C, the condensation reaction – forming the ternary oxide – takes place at 257.7°C.  相似文献   

14.
Chemistry of Gallium. 20. Synthesis and Structures of Novel Triphenylsilyl and Triphenylgermyl Substituted Gallanes and Oligogallanes – [Ga3(GePh3)6], the First Linear Trigallane From the raction of sonochemically prepared “GaI” with LiEPh3 (E = Si, Ge) the compounds [Li(THF)2][GaI(EPh3)3] (E = Si: 22 , E = Ge: 24 ), [Li(THF)4][GaI(SiPh3)3] ( 23 ), [Li(THF)4][Ga2(SiPh3)5] ( 21 ) and [Li(THF)4][Ga3(GePh3)6] ( 25 ) as well as polymeric Li(THF)I ( 20 ) were obtained and structurally characterized. 21 is a monoanionic digallane, exhibiting a trigonal planar and a tetrahedrally coordinated gallium centre. 25 has a linear Ga3 core, where the terminal gallium atoms bear three GePh3‐groups, each. The central Ga atom is only 2‐coordinated. Thus, 25 may be a valuable hint to the formation of larger gallium clusters with “naked” gallium atoms. Derivatives of 21 and 25 have been studied by DFT methods.  相似文献   

15.
Ternary Halides of the A3MX6 Type. II. The System Ag3?xNaxYCl6: Synthesis, Structures, Ionic Conductivity . The influence of the substitution of Ag+ by Na+ ions on the crystal structure and the ionic conductivity of Ag3YCl6 (stuffed LiSbF6-type structure) has been investigated. The system Ag3?xNaxYCl6 forms a complete solid solution. The stuffed LiSbF6-type structure is stable for all compositions. For compounds with Na+ contents of x > 1.67, the cryolite-type structure is observed as the high-temperature form. The transition temperature decreases steadily with increasing Na+ content. The “end member” phase Na3YCl6 transforms at 243 K from the monoclinic cryolite-type structure to the stuffed LiSbF6-type structure (trigonal, R3 ; a = 697.3(1), c = 1 868.4(14) pm, Z = 3; R = 0.094; Rw = 0.069). The crystal structures of Ag1.3Na1.7YCl6 (trigonal, R3 ; a = 691.5(2), c = 1 853.7(6) pm, Z = 3; R = 0.099, Rw = 0.081) and AgNa2YCl6 (trigonal, R3 ; a = 691.7(1), c = 1 853.9(5) pm, Z = 3; R = 0.099, Rw = 0.064) have also been determined. Both chlorides crystallize like Ag3YCl6 and Na3YCl6-I in the stuffed LiSbF6-type structure. The monovalent cations, Ag+ and Na+, are distributed over the five octahedral voids that are occupied by the Ag+ ions alone in Ag3YCl6. The ionic conductivity for compounds within the solid solution Ag3?xNaxYCl6 decreases with increasing Na+ content. The values for Na3YCl6 (σ = 1 · 10?6 Ω?1 cm?1 at T = 500 K) are by 2.5 to 3.5 orders of magnitude smaller than those for Ag3YCl6 (σ = 6 · 10?4 Ω?1 cm?1 at T = 500 K).  相似文献   

16.
Three stable N,N’-diarylated dihydroazaacene radical cations were prepared by oxidation of neutral N,N’-diarylated dihydroazaacenes synthesized via palladium-catalyzed Buchwald-Hartwig aminations of aryl iodides with N,N’-dihydroazaacenes. Both neutral as well as oxidized species were investigated via UV-vis spectroscopy, single crystal analysis, and DFT calculations. All the radical cations are surprisingly stable—their absorption spectra in dichloromethane remain unchanged in ambient conditions for at least 24 hours.  相似文献   

17.
The magnetic properties of a novel cobalt‐based hydrogen vanadate, Co13.5(OH)6(H0.5VO3.5)2(VO4)6, are reported. This new magnetic material was synthesized in single‐crystal form using a conventional hydrothermal method. Its crystal structure was determined from single‐crystal X‐ray diffraction data and was also characterized by scanning electron microscopy. Its crystal framework has a dumortierite‐like structure consisting of large hexagonal and trigonal channels; the large hexagonal channels contain one‐dimensional chains of face‐sharing CoO6 octahedra linked to the framework by rings of VO4 tetrahedra, while the trigonal channels are occupied by chains of disordered V2O4 pyramidal groups. The magnetic properties of this material were investigated by DC magnetic measurements, which indicate the occurrence of antiferromagnetic interactions.  相似文献   

18.
The action of SMe2 on the ten-vertex nido-ruthenaborane [6-(η6-C6Me6)RuB9Hl3] ( 1 ) provides a high-yield route to the unsubstituted isocloso-ruthenaborane [1-(η6-C6Me6)RuB9H9] (2). The benzene analogue [1-(η6-C6Me6)RuB9H9] is prepared similarly. By contrast, reaction of (1) with PhNH2 gives a variety of B-phenylamino isocloso derivatives, including orange crystals of [1-(η6-C6Me6)-2-(PhNH)-isocloso-1-RuB 9 H8] ( 3 ), red-orange [1-(η6-C6Me6)-2,3-(PhNH)2-isocloso-1-RuB9H7] ( 4 ) and dark-red [1-(η6-C6Me6)-5,6,7-(PhNH)3-isocloso-1-RuB9H6] ( 5 ). Detailed 1H and 11B nmr properties of these various compounds are described. The structure of ( 3 ) has been established by a single-crystal X-ray diffraction study of the solvate [1-(η6-C6Me6)-2-(PhNH)-isocloso-1-RuB9H8] · 1/2 CH2Cl2; the crystals were monoclinic, space group C2/c, with a = 1895.1(3), b = 1556.6(3), c = 1716.4(3) pm, β = 104.37(1)° and z = 8.  相似文献   

19.
Chemistry of Dimesityl Iron. VIII Solution Behaviour of Tetramesityldiiron and Crystal Structure of Dimesityl(dimethoxyethane)iron The dimer dimesityliron yields in polar solvents solvated monomers. The adduct with dimethoxyethane was isolated and characterized by X-ray structure determination.  相似文献   

20.
Contributions to the Crystal Chemistry of Uranium Tellurides. I. The Crystal Structure of α-Uranium Tritelluride Single crystals of the title compound up to a size of 8 mm were available via chemical transport reactions with TeBr4 as transporting agent starting from the elements. The analysis by atomic emission spectrometry gave UTe3.0(1). By X-ray single crystal structure analysis we found that UTe3 crystallizes monoclinic (space group P 21/m, Z = 2) with a = 609.7(1) pm, b = 422.06(4) pm, c = 1031.2(1) pm and β = 97.87(1)º in the ZrSe3-structure type. The layer structure is built up by bicapped trigonal prisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号