首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow and solidification of planar jets are analysed by means of an efficient inverse isotherm finite element method. The method is based on a tessellation that is constructed by isotherms as characteristic co-ordinate lines transverse to the flow direction. Thus opposite sides of finite elements lie on isotherms. The method allows the simultaneous determination of the location of the isotherms with the primary unknowns, namely, the velocity, the pressure, the temperature and the location of the free surface. Thus the determination of the location of the solidification front (which is known to pose significant computational difficulties) is automatic. This facilitates the control of the location of the solidification front by controlling macroscopic variables such as the flow rate, the cooling rate and the capillary design. The location of the solidification may then be suitably chosen to influence the frozen-in orientation and structure in extrusion of high-performance materials such as composites and polymers, in continuous casting of metals and in growth of crystals.  相似文献   

2.
A technique to determine the thermal boundary conditions existing during the solidification of metallic alloys in the investment casting process is presented. Quantitative information about these conditions is needed so that numerical models of heat transfer in this process produce accurate results. In particular, the variation of the boundary conditions both spatially and temporally must be known. The method used involves the application of a new inverse heat conduction method to thermal data recorded during laboratory experiments of aluminium alloy solidification in investment casting shell moulds. The resultant heat transfer coefficient for the alloy/mould interface is calculated. An experimental programme to determine requisite mould thermal properties was also undertaken. It was observed that there is significant variation of the alloy/mould heat transfer coefficient during solidification. It is found to be highly dependent on the alloy type and on the vertical position below the initial free surface of the liquid metal. The aluminium casting alloys used in this study were 413, A356, 319 (Aluminum Association designations), and commercially pure aluminium. These alloys have significantly different freezing ranges. In particular, it was found that alloys with a high freezing range solidify with rates of heat transfer to the mould which are very sensitive to metallostatic head.  相似文献   

3.
A method to determine three-dimensional die shapes from extrudate swell and vice versa is presented using a three-dimensional Galerkin finite element method based on a streamlined formulation with the fluid velocities and pressures represented by triquadratic and trilinear basis functions respectively. The three-dimensional streamlined method, an extension of the two-dimensional formulation, uses successive streamsurfaces to form a boundary-conforming co-ordinate system. This produces a fixd, computational domain leaving the spatial location of the elements as unknowns to be determined with the standard primary variables (u, v, w, p). The extrudate produced by a die of a given shape is considered for moderate Reynolds numbers. Finally, the method is extended to address the problem of die design, where a die profile is sought to produce a target extrudate shape.  相似文献   

4.
关于广义等参有限单元的讨论   总被引:1,自引:1,他引:0  
马海涛  高伟 《计算力学学报》2010,27(6):1107-1110
研究了新近提出的广义等参单元,讨论了这一新方法与现有方法的关系,提出了一个建立广义有限单元的一般性方法。  相似文献   

5.
The aim of the present work is to introduce a formulation for the numerical analysis of three‐dimensional thermochemical non‐equilibrium hypersonic flows, using the finite element method and the Taylor–Galerkin scheme and adopting Park's 2‐temperature, 5‐species (N2, O2, NO, N and O) and 17‐reaction model. Examples using Euler and Navier–Stokes equations are included and compared with experimental and numerical works presented by other authors. The results are close to those analysed by other researches and a good computational performance was obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
钢筋混凝土结构的三维有限元非线性分析   总被引:1,自引:0,他引:1  
提出了一个简单的混凝土三维本构模型,结合两种钢筋分布模式编制了钢筋混凝土结构非线性分析的三维有限元程序,通过两个经典的算例对比分析,表明本文提出的混凝土本构模型能够有效地模拟结构的破坏荷载和破坏过程。  相似文献   

7.
In this paper, we present a numerical model to simulate the lost foam casting process. We introduce this particular casting first in order to capture the different physical processes in play during a casting. We briefly comment on the possible physical and numerical models used to envisage the numerical simulation. Next we present a model which aims to solve ‘part of’ the complexities of the casting, together with a simple energy budget that enables us to obtain an equation for the velocity of the metal front advance. Once the physical model is established we develop a finite element method to solve the governing equations. The numerical and physical methodologies are then validated through the solution of a two‐ and a three‐dimensional example. Finally, we discuss briefly some possible improvements of the numerical model in order to capture more physical phenomena. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The singular finite element method is used to solve the sudden-expansion and the die-swell problems in order to improve the accuracy of the solution in the vicinity of the singularity and to speed up the convergence. The method requires minor modifications to standard finite element schemes, and even coarse meshes give more accurate results than refined ordinary finite element meshes. Improved normal stress results for the sudden-expansion problem have been obtained for various Reynolds numbers up to 100 using the singular elements constructed for the creeping flow problem. In addition, the normal stresses at the walls appear to be insensitive to the singularity powers used in the construction of the singular basis functions. The die-swell problem is solved using the singular elements constructed for the stick–slip problem. The singular elements accelerate the convergence of the free surface dramatically.  相似文献   

9.
The problem of appropriate location of the sensors for identification of ingot – mould thermal resistance during continuous casting of metals is the subject of the paper. Analysed problem belongs to the group of inverse problems. The present work shows also the method of identification of unknown thermal resistance using the temperature measurements at the number of sensors located in the wall of the mould. The influence of the location of the sensors on the results of identification is analysed. The best location of the sensors results from the sensitivity analysis for the steady-state inverse heat conduction problem. Validation of the proposed inverse method is realized by comparison of the results taken from solution of inverse and direct problems. Several numerical examples are presented and analysed.  相似文献   

10.
A system of evolutionary partial differential equations (PDEs) describing the two-phase flow of immiscible fluids in one dimension is developed. In this formulation, the wetting and nonwetting phases are treated to be incompressible and compressible, respectively. This treatment is indeed necessary when a compressible nonwetting phase is subjected to compression during confinement. The system of PDEs consists of an evolution equation for the wetting-phase saturation and an evolution equation for the pressure in the nonwetting phase. This system is applied to the problem of unsaturated flows to assess the importance of air-phase compressibility. For those situations where air can move freely within the medium and ultimately escape through the boundaries without experiencing any compression, it is then reasonable to treat air as an incompressible phase so that the total volumetric flux becomes spatially invariant. As shown by Morel-Seytoux and Billica, this leads to a coupled evolution equation for water saturation and an integral expression for total volumetric flux. In the event that an air phase is subjected to confinement in some manner, the total volumetric flux cannot be assumed to be spatially invariant as did Morel-Seytouxet al.The system of evolutionary PDEs developed in the present paper are precise and uniformly valid in time and space and, more importantly, smoothly accommodate a nonwetting phase whose state may change from unconfined to confined during the course of the flow process and vice-versa. Consequently, the complete system of PDEs may be used to analyze unsaturated flows in a straightforward manner.Depending on the initial and boundary conditions, the solutions to the system of PDEs may develop steep gradients near the wetting front. For this reason, the moving finite element (MFE) method introduced by Miller and Miller in conjunction with Gear's implicit stiff temporal solver provides an automatic and powerful scheme suitable for the initial-boundary value-problem (IBVP) developed herein.  相似文献   

11.
The finite element method has been considered as one of the most significant engineering advances of the twentieth century. This computational methodology has made substantial impact on many fields in science and also has profoundly changed engineering design procedures and practice. This paper, mainly from a solid mechanics perspective, and the Swansea viewpoint in particular, describes very briefly the origin of the methodology, then summaries selected milestones of the technical developments that have taken place over the last fifty years and illustrates their application to some practical engineering problems.  相似文献   

12.
The aim of this paper is to introduce a new algorithm for the discretization of second‐order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier–Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Reissner板问题的有限元广义混合法   总被引:4,自引:0,他引:4  
用一般弹性体的广义混合变分原理,导出了适合Reissner板弯曲问题的广义混合变分原理及其有限元广义混合法。算例说明,该有限元模式的刚度可以改变,比常规位移法的精度高,同时还能克服常规Reissner板位移元用于计算薄板时所出现的“剪切自锁”现象,计算结果稳定,最后分析该法能够克服“剪切自锁”现象的原因。  相似文献   

14.
岩土材料应变局部化的有限元分析方法   总被引:1,自引:0,他引:1  
采用有限单元法分析岩土材料的应变局部化时经常会遇到单元尺寸敏感性问题和网格锁定问题。自适应网格技术能够有效地解决网格锁定问题,但仍然无法克服计算结果对单元尺寸的依赖性,尽管在一维情况下被证明是可行的。复合体理论(均匀化理论)和弱非连续有限元方法可以成功地解决岩土材料的单元尺寸敏感性问题,在一维情况下两类方法实际上是一致的。本文针对岩土材料应变局部化的有限元新技术所存在的若干问题进行了详细的讨论,并给出了有关算例。  相似文献   

15.
This paper presents an iterative scheme for the efficient simulation of groundwater flow in a two-dimensional, heterogeneous aquifer in which the hydraulic conductivity is anisotropic. The scheme is applicable to matrix equations arising from both mixed finite-element and cell-centered finite-difference approximations to the flow equations, and it extends readily to three space dimensions. The scheme, which generalizes an earlier technique for isotropic aquifer, admits a fast multigrid solver for hydraulic heads. Numerical experiments illustrate both the effectiveness of the scheme and the importance of accurately treating anisotropy: Small changes in the off-diagonal terms in the conductivity tensor cause relatively large changes in both the predicted heads and the Darcy velocities.  相似文献   

16.
THETEMPERATUREANALYSISOFTHEBILLETWITHPHASECHANGEDURINGCONTINUOUSCASTINGZhaoXing-hua(赵兴华),ChengXiao-di(陈小弟)(ShanghaiUniversity...  相似文献   

17.
A computer simulation is made of cellular convection in a moist atmosphere in an endeavour to obtain a computer model which more closely approximates the observed modes of convection. A finite element Galerkin technique, with Taylor approximation and Crank-Nicolson, is employed and comparisons are made with the author's earlier finite element models of convection in an absolutely unstable atmosphere and with finite difference models. It is found that the inclusion of the moisture effects alters the structure of a cell to that of a narrow ascending region and a wider descending region with the former of larger velocities than the latter, and also alters the preferred mode of convection by increasing the aspect ratio. This more closely resembles that which is observed in the atmosphere.  相似文献   

18.
We discuss the use of polygonal finite elements for analysis of incompressible flow problems. It is well‐known that the stability of mixed finite element discretizations is governed by the so‐called inf‐sup condition, which, in this case, depends on the choice of the discrete velocity and pressure spaces. We present a low‐order choice of these spaces defined over convex polygonal partitions of the domain that satisfies the inf‐sup condition and, as such, does not admit spurious pressure modes or exhibit locking. Within each element, the pressure field is constant while the velocity is represented by the usual isoparametric transformation of a linearly‐complete basis. Thus, from a practical point of view, the implementation of the method is classical and does not require any special treatment. We present numerical results for both incompressible Stokes and stationary Navier–Stokes problems to verify the theoretical results regarding stability and convergence of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a continuous finite element solution for fluid flows with interfaces. The method is founded on the sign-preserving flux correction transport methodology and extends nonoscillatory finite element algorithm capabilities to predict interface motion efficiently. The procedure is composed of three main stages, along the lines of the conservative level set method: transport of phase function, reconstruction of phase function, and solution of equations of motion of two incompressible fluids. The flux correction technique takes action on the three steps. Limiting process incorporates a straightforward refinement to remove global mass residuals present in the earliest version of the algorithm. This is of particular importance in the transport step. Moreover, new method retains the efficacy of the original. To reconstruct the phase function after transport, a novel nonlinear (and conservative) streamlined diffusion equation is proposed, with an anisotropic diffusivity comprising artificial compression and diffusive fluxes along interface displacements direction. A substantial reduction of unphysical overshoots along the interface is reached by an improved bound estimation that includes interface information. Complete operation of the correction algorithm for two incompressible fluids flows requires two pressure solutions. We explore a reduced form to circumvent this extra burden. Numerical experiments verify the formulation by reproducing stringent benchmarks both for transport/reinitialization and for two-fluid interface propagation.  相似文献   

20.
A new procedure is proposed for implicit dynamic analysis using the finite element method. The main aim is to give stable solutions with large time-steps in the presence of significant rigid body motions, in particular rotations. In contrast to most conventional approaches, the time integration strategy is closely linked to the element technology with the latter involving a form of co-rotational procedure. For the undamped situation, the solution procedure leads to an algorithm that exactly conserves energy when constant external forces are applied (i.e. with gravity loading).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号