首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work in our laboratories has fully characterized the surface region of a segmented poly(ether-urethane) (PEU) extending from the air/polymer interfacial region through bulk depths in the micron range. This characterization utilized energy and angle dependent Electron Spectroscopy for Chemical Analysis (ESCA), Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR), and Comprehensive Wettability Profiling (contact angle using a homologous series of liquids) as defined by Zisman. In this study this same multi-analytical-technique approach is used to elucidate changes in these PEU surfaces induced through an H2O Radio Frequency Glow Discharge (RFGD) plasma. This investigation reports both qualitative and quantitative changes due to the modification treatments as well as the permanency of the changes effected on these surfaces through the plasma treatment. From our analyses, the amount of surface residing polyurethane (hard segment) is observed to increase due to a proposed plasma etching mechanism. Further, the addition of oxygen containing functionality is detected at the modified surfaces unique with respect to the unmodified PEU. These surface modifications which show large increases in wettability, are finally observed to be semi-permanent over a time period of 6 months.  相似文献   

2.
We report a simple modification of poly(dimethylsiloxane) (PDMS) surfaces with poly(ethylene glycol) (PEG) through the adsorption of a graft copolymer, poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) from aqueous solution. In this approach, the PDMS surface was treated with oxygen plasma, followed by immersion into aqueous solution containing PLL-g-PEG copolymers. Due to the hydroxyl/carboxylic groups generated on the PDMS surface after oxygen plasma, the polycationic PLL backbone is attracted to the negatively charged surface and PEG side chains exhibit an extended structure. The PEG/aqueous interface generated in this way revealed a near-perfect resistance to nonspecific protein adsorption as monitored by means of optical waveguide lightmode spectroscopy (OWLS) and fluorescence microscopy.  相似文献   

3.
We prepare poly(2-methoxyethyl-, 2-(2-methoxyethoxy)ethyl-, 2-[2-(2-methoxyethoxy)ethoxy]ethyl methacrylate) (p(nEOMA), n=1, 2, and 3) brushed surfaces with varying the polymer density by surface initiated polymerization. The amount of bovine serum albumin (BSA) adsorbed on the surfaces is investigated. The mobility of the polymer chain in the polymer/water interfaces and the structure of adsorbed water on the surfaces are characterized by Electron Spin Resonance (ESR) and transmission-Fourier transform infrared (FT-IR) spectroscopy, respectively. This work reports the relationship between these surface properties and albumin adsorption. As a result, the surface having both a high molecular mobility and bulk-like water found to be very effective in preventing albumin adsorption.  相似文献   

4.
Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.  相似文献   

5.
Inspired by the birch bark, which has multilayered structures, we fabricated layer-by-layer (LbL) assembled montmorillonite (MMT) and poly(p-aminostyrene) (PPAS) nanocomposites on cotton fiber curved surfaces to provide protection from atomic oxygen (AO) erosion. The multilayer coated fibers had high flexibility, uniformity, defect free, ease of preparation and low cost. The AO erosion durability has been dramatically enhanced which was evidenced by testing in the ground-based AO effects simulation facility. And the dimension and surface morphologies of the fibers observed by SEM had few changes, indicating excellent AO erosion resistant ability of the coatings. These results provide us a new method to design fibrous materials exposed directly in low earth orbit environment.  相似文献   

6.
Irreversible adsorption of poly(vinyl alcohol) (PVA) on hydrophobic, porous poly(vinylidene fluoride) (PVDF) membranes was carried out using aqueous PVA solution. Water permeation was observed in PVDF microporous membranes after PVA adsorption, and maximum permeability was obtained after treatment with 4% PVA solution. Water permeability increased linearly with increasing PVA concentration up to 4%, and then a marginal decrease with a further increase in PVA concentration occurred. PVA adsorbed PVDF membranes were subjected to intense physicochemical analysis, especially with XPS. XPS results display the presence of an interface between PVA and PVDF, and the binding energy (BE) of the interface is low for the PVDF membranes treated with 4% PVA. Carbon from CF2-groups and F 1s core level clearly showed a decrease in its content on the surface after PVA adsorption and showed a minimum fluorine content at 4% PVA. F 1s BE shifts by 0.5 eV upon PVA adsorption and is independent of PVA concentration. EDAX analysis indicates that the bulk oxygen content remains within 4.5 +/- 0.6% and is independent of the PVA concentration. Nonetheless, a large amount of surface atom percentage of oxygen (20 +/- 4%) from O 1s core level shows an increase in PVA content on the surface of PVDF, and it is restricted mostly to the surface. The 4% PVA treated PVDF membrane clearly shows a broadening of O 1s core level to lower BE and indicates the interaction between PVDF and PVA which is significantly different compared to any other compositions. A new valence band feature at low BE, which is nonexistent on PVDF, develops after PVA adsorption. This indicates that the shift in the nature of the highest occupied molecular orbital (HOMO) derived mostly from oxygen; simultaneously, a suppression in the PVDF derived band indicates the change in nature of the PVA adsorbed surfaces from hydrophobic to hydrophilic. The above observations also suggest an irreversible electronic interaction between PVA and PVDF, possibly through charge transfer.  相似文献   

7.
This paper reports a simple microwave plasma patterning of poly(dimethylsiloxane) (PDMS) surfaces, which is accomplished by allowing selective surface areas to microwave plasma exposure in the presence of gaseous monomer. When maleic anhydride is used for microwave plasma reaction in the presence of physical barrier on the PDMS substrate, the resulting patterned surfaces with chemically bonded maleic anhydride and carboxylic acid groups are generated. In this particular study we attached amoxicillin via ammonolysis under weak base conditions in the presence of a catalyst as well as poly(ethyleneglycol) (PEG). A combination of internal reflection IR imaging (IRIRI) and atomic force microscopy (AFM) revealed that amoxicillin and PEG can be readily reacted on the microwave plasma patterned PDMS surfaces. Surface areas directly exposed to microwave plasmons exhibit the highest reactivity due to higher content of functional groups. These studies also show that molecular weight of PEG has also significant effect on kinetics of surface reactions.  相似文献   

8.
Molecular ions include information about end groups, functional groups and molecular weight. A method for the direct detection of these in the high mass range (m/z > 1000) from poly(dimethylsiloxane) (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Using the silver-deposition/TOF-SIMS method, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces, and their structure and molecular weight were evaluated. In addition, their images were observed without the interference of deposited silver. By applying to the analysis of paint defects etc., it was confirmed that this technique is useful to analyze actual industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as lubricant additives and oils on solid surfaces. Therefore, the silver deposition/TOF-SIMS method was proved to be useful for the analysis of ultrathin substances on solid surfaces.  相似文献   

9.
Surfaces carrying hydrophilic polymer brushes were prepared from poly(styrene)-poly(acrylic acid) and poly(styrene)-poly(ethylene oxide) diblock copolymers, respectively, using a Langmuir-Blodgett technique and employing poly(styrene)-coated planar glass as substrates. The electrical properties of these surfaces in aqueous electrolyte were analyzed as a function of pH and KCl concentration using streaming potential/streaming current measurements. From these data, both the zeta potential and the surface conductivity could be obtained. The poly(acrylic acid) brushes are charged due to the dissociation of carboxylic acid groups and give theoretical surface potentials of -160 mV at full dissociation in 10(-)(3) M solutions. The surface conductivity of these brushes is enormous under these conditions, accounting for more than 93% of the total measured surface conductivity. However, the mobility of the ions within the brush was estimated from the density of the carboxylic acid groups and the surface conductivity data to be only about 14% of that of free ions. The poly(ethylene oxide) (PEO) brushes effectively screen the charge of the underlying substrate, giving a very low zeta potential except when the ionic strength is very low. From the data, a hydrodynamic layer thickness of the PEO brushes could be estimated which is in good agreement with independent experiments (neutron reflectivity) and theoretical estimates. The surface conductivity in this system was slightly lower than that of the polystyren substrate. This also indicates that no significant amount of preferentially, i.e., nonelectrostatically attracted, ions taken up in the brush.  相似文献   

10.
Poly(p-phenylene terephthalamide) (PPTA) and poly(p-phenylene benzobisoxazole) (PBO) fibers were exposed to an oxygen plasma under equivalent conditions. The resulting changes in the surface properties of PPTA and PBO were comparatively investigated using inverse gas chromatography (IGC) and atomic force microscopy (AFM). Both non-polar (n-alkanes) and polar probes of different acid-base characteristics were used in IGC adsorption experiments. Following plasma exposure, size-exclusion phenomena, probably associated to the formation of pores (nanoroughness), were detected with the largest n-alkanes (C(9) and C(10)). From the adsorption of polar probes, an increase in the number or strength of the acidic and basic sites present at the fiber surfaces following plasma treatment was detected. The effects of the oxygen plasma treatments were similar for PPTA and PBO. In both cases, oxygen plasma introduces polar groups onto the surfaces, involving an increase in the degree of surface nanoroughness. AFM measurements evidenced substantial changes in the surface morphology at the nanometer scale, especially after plasma exposure for a long time. For the PBO fibers, the outermost layer - contaminant substances - was removed thanks to the plasma treatment, which indicates that this agent had a surface cleaning effect.  相似文献   

11.
The molecular weight of poly(dioxaborolane)s can be controlled during the polymerization reaction or through post-polymerization processing in such a manner that hydrolytic damage to these materials may be repaired, thereby regenerating the polymer.  相似文献   

12.
The synthesis and characterization of poly(dimethylsiloxanes) bearing maleimides end‐groups (PDMSM) were carried out through imidization of maleic anhydride with three poly(dimethylsiloxanes) diamines of different molecular weights. Self‐photopolymerization of PDMSM was studied by Real‐Time Fourier Transform infrared spectroscopy (RT‐FTIR) and was possible even without photoinitiator (Darocur 1173). The reaction was found to proceed within seconds upon exposure to ultraviolet (UV) radiation to generate highly crosslinked polymer networks. The results indicated that these polymerizations were less sensitive to oxygen inhibition than the radical processes carried out on conventional UV‐curable acrylate resins. The thermal and mechanical properties of these resulting materials were studied starting from PDMS precursors with different molecular weights. These materials exhibit a low glass transition temperature (相似文献   

13.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

14.
The blend surfaces of poly[oxy(n-decylsulfonylmethyl)ethylene] (CH(3)-10SE) and poly (3-hexylthiophene) (P3HT) with different weight ratios were prepared by spin coating the polymer solution mixtures. In this study, their surface properties such as surface morphology, chemical composition, molecular structure, and wettability were systematically studied and correlated with liquid crystal (LC) alignment behaviors on the blend films. Therefore, we found that CH(3)-10SE part with a well-ordered side chain structure predominantly affects the both of wettability and LC alignment behavior of the blend films while there was no clear association between the wettability and the LC alignment behavior.  相似文献   

15.
To understand the different action mechanisms of space irradiation on polymers, phenolphthalein poly(ether sulfone) (PES‐C) blocks were irradiated by electrons and atomic oxygen. The changes in surface chemical structure and composition of PES‐C in different radiations were studied by attenuated total‐reflection FTIR (FTIR‐ATR) and XPS. It was found that PES‐C was prone to be influenced by space irradiation. Electron and atomic oxygen irradiation can destroy the molecular chain of PES‐C and result in changes of surface chemical composition of the polymer. But due to the different nature of the radiation sources, electron irradiation induced the carbonization of the polymer surface, while atomic oxygen irradiation resulted in the oxidation of the polymer surface. Besides this, the sulfone structure was reduced or oxidized depending on the nature of the radiation sources. So, different radiation sources might influence the surface chemical structure and composition of polymers differently. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This study investigates the role that surface functionalisation of silicone elastomer (SE) by atmospheric pressure plasma induced graft immobilisation of poly(ethylene glycol) methyl ether methacrylate (PEGMA) plays in the attendant biological response. SE is used in modern ophthalmic medical devices and samples of the material were initially plasma treated using a dielectric barrier discharge reactor (DBD) to introduce reactive oxygen functionalities, prior to in situ grafting of two molecular weights of PEGMA (MW 1000 Da: PEGMA(1000), MW 2000 Da: PEGMA(2000)). The variously processed surfaces were characterised by water contact angle analysis, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and atomic force microscopy. Lens epithelial cells were then cultured on the PEGMA grafted SE surfaces. It was found that cells on the pristine surface were not well spread and had shrunken morphology. On the DBD pre-treated surfaces, the cells were well spread. On the PEGMA(1000) surface, the cells displayed evidence of shrinkage and were on the verge of detaching. Remarkably, on the PEGMA(2000) surface, no cell adhesion was detection. Bacterial adhesion to the surfaces was studied using Staphylococcus aureus NTC8325. There was no difference in the number of bacteria adhering to any of the surfaces studied.  相似文献   

17.
Surface modification of expanded poly(tetrafluoroethylene) (ePTFE) vascular prostheses was carried out by means of low pressure microwave plasma treatment. Hydrogen/ water vapour mixtures (containing excess of hydrogen) were shown to be efficient with respect to functionalization of PTFE. The results of treatments in dependence on various gas pressures and treatment times were detected by physicochemical techniques (zeta potential, wetting measurements) and by surface spectroscopy (XPS, ATR-FTIR). Furthermore, adhesion and proliferation of human endothelial cells from umbilical cord (HUVEC) onto modified ePTFE were observed in vitro in culture media. The results of this biological test of plasma treated materials correlate well with physicochemical surface parameters.  相似文献   

18.
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecules of varying chain lengths. The native PDMS surface is pretreated by exposure to UV irradiation or to an oxygen plasma, and the covalent linkage of POE-silanes as well as physical adsorption of a triblock-copolymer (F108) are studied. Contact angle measurements and atomic force microscopy (AFM) imaging revealed homogeneous attachment of POE-silanes and F108 to the PDMS surfaces. In the case of F108, different adsorption mechanisms to hydrophilic and hydrophobic PDMS are discussed. Determination of the electroosmotic mobilities of these coatings in PDMS microchannels prove their use for electrokinetic applications in which EOF reduction is inevitable and protein adsorption has to be suppressed.  相似文献   

19.
In this study, temperature-sensitive membranes were prepared by phase transition of the mixture of the temperature-sensitive poly(N-isopropylacrylamides) (PNIPAAM) microgels and poly(vinylidene fluoride). The results of Fourier transformed infrared spectrometer, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscope photographs indicate that the PNIPAAM microgels are distributed more in the inner membrane than on the surface. The scanning electron microscope photographs reveal the blend membranes having porous surfaces with nanometer sizes and porous cross-sections with micrometer sizes. The addition of the PNIPAAM microgels is found to improve the porosity, the pore size, water flux, as well as to enhance the hydrophilicity and anti-fouling property of the blend membranes. The blend membrane shows temperature-sensitive permeability and protein rejection with the most dramatic change at around 32 °C which is the lower critical solution temperature of PNIPAAM, when water or bovine serum albumin solution flow through. Specifically, below 32 °C, the blend membrane shows a high protein rejection ratio which decreases with increasing temperature and a low water flux which increases with increasing temperature; above 32 °C, the blend membrane shows a low protein rejection ratio which decreases with increasing temperature and a high water flux which increases with increasing temperature.  相似文献   

20.
Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号