共查询到20条相似文献,搜索用时 15 毫秒
1.
On the Synthesis of Alkaline-Earth Dihalides and the Structures of Ca3Br2CBN and Sr3Cl2CBN The reaction of alkaline-earth carbonates with ammonium chloride or bromide yields alkaline-earth dihalides at relatively low temperatures (300°C). Ca3Br2CBN and Sr3Cl2CBN were synthesized in sealed niobium containers at 950°C from the metal, its dihalide, boron nitride and graphite. The crystal structure of Sr3Cl2CBN was refined from single crystal data. Sr3Cl2CBN crystallizes isotypic with Ca3Cl2CBN in the orthorhombic space group Pnma (No. 62) with a = 1448.4(2) pm b = 405.46(5) pm, c = 1170.0(1) pm. The lattice constants of Ca3Br2CBN and Sr3Cl2CBN were determined by orthorhombic indexing of the powder patterns (Ca3Br2CBN: a = 1444.3(2) pm, b = 390.64(6) pm, c = 1139.2(2) pm; Sr3Cl2CBN: a = 1444.0(4) pm, b = 405.27(8) pm, c = 1167.8(2) pm). There was no success in preparing homologues with Barium. 相似文献
2.
Tl4Pd3Cl10 – A Compound with a New [(PdCl2Cl2/2)4]4– Group Single crystals of Tl4Pd3Cl10 can be obtained by hydrothermal synthesis. They show tetragonal symmetry with lattice parameters a = 15.956(1) Å and c = 14.146(1) Å, Z = 8 and space group I42d (No. 122). The atomic arrangement of Tl4Pd3Cl10 is explored by X‐ray crystal structure analysis. Tl4Pd3Cl10 is the first example of a new structural type with a hitherto not isolated tetramer [(PdCl2Cl2/2)4]4– group. 相似文献
3.
Pentacalcium Hexaphosphahypodiphosphate, Ca5P8, a Compound with Isolated Anions P810? in the Staggered Ethane Conformation Ca5P8 is prepared from calcium and red phosphorus in a molar ratio 5:8 in argon atmosphere in corundum crucibles inserted in quartz ampullae (3.5 d 1 000°C). It is a red-brown powder which is hydrolyzed by moisture. Single crystals are formed from powder at 1 100°C within 60 d. Ca5P8 crystallizes in a new structure type (mC26) with isolated anions P810? in staggered conformation: C2/m (no. 12); a = 689.9(4) pm, b = 1 188,3(4) pm, c = 748.4(3) pm, β = 108.25(2)°, Z = 2; d = 2.56(1). Ca5P8 is the first compound containing polyphosphide anions with fourfold and single bonded phosphorus atoms (formally P+ and P2?, resp.). The cations Ca2+ are arranged in a distorted cubic close-packing. The centers of the polyphosphide anions replace in an ordered way one third of Ca2+ in every second layer. The terminal P atoms occupy all octahedral interstices, so that P810? is coordinated by 18 Ca2+ in form of a cuboctahedron with capped squaric faces. 相似文献
4.
CsPdCl3 – A Compound with Isolated [Pd2Cl6] Groups and an Inorganic Cation The crystal structure of CsPdCl3 has been characterized by X-ray powder diffraction methods. Meanwhile it was possible to isolate single crystals and to confirm the structure by single crystal X-ray investigations. CsPdCl3 crystallizes orthorhombic in space group Ibam (No. 72) with a = 13.724(1), b = 10.579(1), c = 8.499(1) Å, and Z = 8. CsPdCl3 is a compound with a dinuclear [Pd2Cl6]2– group and a cesium cation. Formerly such groups are only found in combination with large “organic” cations so far. 相似文献
5.
ACl3 · 2NH3 – a Compound with the Crystal Structure of a Tetraammine Dichloroaluminiumtetrachloroaluminate – [AlCl2(NH3)4]+[AlCl4]? Ammoniates of aluminiumchloride AlCl3 · xNH3 are in discussion as starting materials for the synthesis of aluminiumnitride. Therefore the reactions of melts of monoamminealuminiumchloride with ammonia were investigated. They react at 150°C within 10 min with one mole of ammonia to the diammoniate, [AlCl2(NH3)4]+[AlCl4]?. The pure compound can be obtained by sublimation at 200°C in vacuumline apparatus. X-ray structure determination on [AlCl2(NH3)4]+[AlCl4]? was carried out: see “Inhaltsübersicht”. 相似文献
6.
NaAg3S2, a Thioargentate Containing the Anionic Cluster [Ag6S4]2? . Dark-red octahedrally shaped crystals of NaAg3S2 could be obtained by the reaction of NaAg(CN)2 and NaCN in a stream of hydrogen sulfide at 630 K. NaAg3S2 crystallizes cubic, a=12.358(1) Å, space group Fd3 m, Z=16. The structure was determined from four-circle diffractometer data. NaAg3S2 contains the anionic cluster [Ag6S4]2?. The structure can be traced back to the spinel structure typ. An extended Hückel calculation for the cluster anion, which is considered to be isolated, shows weak bonding silver-silver interactions. NaAg3S2 is diamagnetic at room temperature. 相似文献
7.
Cs4[IrO4], a New Iridate with Planar Anion [IrO4]4? For the first time we obtained black single crystals of Cs4[IrO4] by heating intimate mixtures of CsO0.52 and IrO2 (molar ratio Cs : Ir = 4.30 : 1.00; “Ag-bomb”, 740°C/86 d). Cs4[IrO4] crystallizes monocline, C 2/m, with a = 1031.66(8) pm, b = 671.61(4) pm, c = 660.44(6) pm, b? = 108.118(7)° and Z = 2 in the K4[IrO4]-type. The structure has been determined by four-circle-diffractometer data (PW 1100 from Phillips, Ag? Kα , graphite) with 841 I0(hkl) with I ≥ 3s?(F) (from 947 I0(hkl) out of 3529 measured reflexes). The Madelung Part of Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated and discussed. 相似文献
8.
9.
AlCl3 · 3NH3 — a Compound with the Crystal Structure of a Tetraammine Dichloro Aluminium-Diammine Tetrachloro Aluminate: [AlCl2(NH3)4]+[AlCl4(NH3)2]? . AlCl3 · 3 NH3 ? [AlCl2(NH3)4]+ [AlCl4(NH3)2]? forms during the reaction of two mole NH3 with AlCl3(NH3) at T ≥ 200°C. Repeated heating and cooling within 48 h between 200°C and 250°C gives a homogeneous product with total uptake of the necessary amount of NH3. Slow sublimation in a vacuum line apparatus at 200°C gives crystals of the triammoniate sufficient for a X-ray structure determination: The compound contains elongated [AlCl2(NH3)4]+ octahedra and compressed [AlCl4(NH3)2]? octahedra. Besides ionic bonding hydrogen bridge bonds with 3.369 Å ? d(N—H … Cl) ? 3.589 Å stabilize the atomic arrangement. 相似文献
10.
High Resolution Electron Microscopy Investigations of La2CeTaO6Cl3 and its Thermal Decomposition Product La2Ce Ce TaO6Cl3?x The thermal decomposition of the hexagonal La2CeTaO6Cl3 led to a mixed-valent product La2CeCe TaO6Cl3?x with a complicated monoclinic structure. The detailed inspection shows two subunits A and B, which form the monoclinic unit cell by a ABAB sequence. The subunit A is almost identical to the hexagonal cell of the starting material while subunit B has additional Ln- and Cl-positions. For this reason, the main structure features of the monoclinic compound and the starting material are related, which is clearly seen in the electron microscopy investigations. As might be expected from the relationship between the subunits A and B one can observe defects in the monoclinic compound arising from the various possibilities of combining these building elements. We also found structure defects in the hexagonal starting material, which are caused by the presence of the subunit B. 相似文献
11.
Structures with AIB2? and BaAl4?type Units. I The Compounds Sr4Pd5P5 and Sr2Pd3P3 Sr4Pd5P5 (Cmcm, a = 4.177(1) Å, b = 31.377(5) Å, c = 8.581(2) Å, Z = 4) und Sr2 Pd3P3(Pmmm, a = 4.199(1) Å, b = 4.212(1) Å, c = 34.227(4) Å, Z = 4) have been prepared by heating the elements. Both structures contain exclusively units characteristic for the AIB2? and BaAl4?type. The ratio between isolated P-atoms and P2?pairs is interpreted with an ionic splitting of the formulas. 相似文献
12.
Synthesis and Crystal Structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an Adamantane-like Anion [P4(NH)6N4]4? Crystals of Na10[P4(NH)6N4](NH2)6(NH3)0.5 were obtained by the reaction of P3N5 with NaNH2 (molar ratio 1:20) within 5 d at 600°C in autoclaves. The following data characterize X-ray investigations: Fm3 m, Z = 8, a = 15.423(2) Å, Z(F) = 261 with F ≥ 3 σ(F) Z(Variables) = 27, R/Rw = 0.086/0.089 The compound contains the hitherto unknown anion [P4(NH)6N4]4?, which resembles adamantane. The total structure can be described as follows: The centers of gravity of units of [Na8(NH2)6(NH3)]2+ – 8Na+ on the corners of a cube, 6NH2? on the ones of an inscribed octahedron with NH3 in the center – follow the motif of a cubic-closest packed arrangement. Units of [Na12(NH2)6]6+ – 12Na+ on the corners of a cuboctahedron and 6NH2? on the ones of an inscribed octahedron – occupy all octahedral and those of [P4(NH)6N4]4? all tetrahedral sites. 相似文献
13.
14.
The Metal-Rich Titanium Selenide Ti9Se2 The new compound Ti9Se2 has been prepared as hitherto most metal-rich phase in the system titanium-selenium. It crystallizes in the orthorhombic space group Pbam (No. 55) with a = 691.7(2), b = 1 550.5(9), c = 345.4(2) pm. The structure consists of [Ti9]-strings which are described within the concept of condensed clusters. The Se atoms are coordinated by tricapped trigonal prisms of Ti atoms. 相似文献
15.
PdSCl, a Molecular Palladium(II) Disulfidechloride with Octanuclear Pd8(S2)4Cl8 Groups and with Tetra Metal-coordinated bridging Disulfide Groups Black crystals of PdSCl have been obtained by reaction of Pd with S2Cl2 in closed quartz ampoules at 200°C. The compound is to be formulated as a Palladium(II)-disulfidechloride consisting of Pd8(S2)4Cl8 molecules with approximately D4h symmetry. In the octanuclear complexes Pd atoms form a cube, where bridging disulfide groups are found in front of 4 faces and μ2?bridging Cl atoms on 8 edges. In the monoclinic crystal structure (a = 8.763(2) Å; b = 9.082(2) Å; c = 13.662(4) Å; β = 91.748(23)°; V = 1086.8 Å3; Z = 16 PdSCl; Space gr. P21/n) the molecules form a cubic closed arrangement. 相似文献
16.
NaTe3 – a Compound with Cuban-like Clusters Te126? NaTe3 results as a greyish microcrystalline powder if stoichiometric amounts of the pure elements sodium and tellurium (molar ratio 1:3) are allowed to react in liquid ammonia at about ?50°C. After melting the crude product (500°C, 1 h, corundum crucible in sealed glass ampoule), followed by an annealing period (380°C, 5 days) NaTe3 yields as a silvery compound with metallic lustre. NaTe3 is trigonal, space group P3 c1, Z = 12, with a = 9.033(2) Å and c = 21.930(4) Å. It contains Te62?-chains, linked together via their terminal atoms producing infinite strings. These strings may be thought to be built up of cuban-like clusters Te126?. 相似文献
17.
The triatomic C3 unit that is known to exist in Mg2C3 has recently been found in the new compounds Ca3Cl2C3 and Sc3C4. The electronic structure of these compounds is analyzed with the aid of extended Hückel Calculation. A fragment molecular Orbital analysis (FMO) is used to study the bonding characteristic of the C3 unit in the ionic Ca3Cl2C3, and in Sc3C4, the latter Containing C2 unit and single C atoms as well. Sc3C4 Contain partially filled Sc (d) and C2 bands leading to Metallic conductivity and Pauli Paramagnetism. The C? C bond distance in the diatomic C2 units is significantly increased (dc? c= 125 pm) relative to C2?2 or acetylene, because antibonding π*g orbitals are partially filled. The unusual bending of the C3 unit (dc? c= 134 pm) in Sc3C4 (175,8°) and in Ca3Cl2C3 (169,0°) is likely to be a result of the packing arrangement in these structures. 相似文献
18.
Li2H3IO6, a New Variant of the Molybdenite Structure Li2H3IO6 crystallizes in P61 (a = 529.70(8), c = 2 759.6(5) pm; Z = 6). The crystals are twinned by merohedry, described by m ‖ [001] and 2 ? [001]. According to the results of an X-ray structure determination (2 778 diffractometer data, Rw = 0.047), Li2H3IO6 exhibits a layer structure, with oxygen forming a distorted variant of the sulfur partial structure in molybdenite (MoS2), however, with iodine and lithium in the more (Li) or less (I) distorted octahedral holes. The Li2IO6 packages are connected via strong hydrogen bonds along the edges of distorted trigonal prisms. 相似文献
19.
Dimitrios G. Liakos Emmanuel D. Simandiras Nikolaos Psaroudakis Konstantinos Mertis 《ChemInform》2007,38(22):no-no
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. 相似文献
20.
RuS4Cl12 and Ru2S6Cl16, Two New Ruthenium(II) Complexes with SCl2 Ligands Ru powder was reacted with SCl2 in closed silika ampoules at 140 °C. From the black solution three compounds RuS4Cl12 1 , Ru2S6Cl16 2 , and Ru2S4Cl13 3 could be crystallized and characterized by x ray analysis. Black crystals of 1 (monoclinic, a = 9.853(1) Å, b = 11.63(1) Å, c = 15.495(1) Å, β = 105.23(1)°, space group P21/c, z = 4) are identified as Trichlorsulfonium‐tris(dichlorsulfan)trichloro‐ruthenat(II) SCl3[RuCl3(SCl2)3]. In the structure the complex anions fac‐[RuCl3(SCl2)3]– and the cations [SCl3]+ are connected to ion pairs by three chlorine bridges. The brown crystals of 2 (triclinic, a = 7.754(2) Å, b = 7.997(2) Å, c = 10.708(2) Å, α = 103.74(3)°, β = 98.44(3)°, γ = 108.58(3)°, space group P‐1, z = 1) contain the binuclear complex Bis‐μ‐chloro‐dichloro‐hexakis(dichlorsulfan)‐diruthenium(II), (SCl2)3ClRu(μ‐Cl)2RuCl(SCl2)3 with two fac‐RuCl3(SCl2)3‐units connected by two chlorine bridges. 3 was identifyed as a known mixed valence Ru(II,III) binuclear complex [Cl2(SCl2)Ru(μ‐Cl)3Ru(SCl2)3]. The vibrational spectra and the thermal behaviour of the compounds are discussed. 相似文献