首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The problem of heat convection from a vertically oscillating cylinder in a quiescent fluid is investigated. The governing equations of motion and energy are solved numerically in a non-inertial frame of references to determine the flow field and heat transfer characteristics under different conditions. The main dominating parameters are Keulegan–Carpenter number, KC, frequency parameter, β, Grashof number, Gr and Prandtl number, Pr. The ranges considered for these parameters are KC ≤ 10, β≤40 and Gr ≤ 105 while Prandtl number is kept constant. The study revealed that the effect of amplitude and frequency of oscillation on heat transfer is strongly influenced by the Grashof number range. In the forced convection regime (Gr = 0), the increase of KC creates extensive vortex motion at all cylinder positions that leads to a significant increase in heat transfer. A similar trend, but with a lesser extent, is also observed for the increase of β. However, at high Grashof numbers, the effect of oscillation on heat convection is only significant at large values of KC. Received on 5 June 2000 / Published online: 29 November 2001  相似文献   

2.
Numerical experiments are performed to study rotational effects on the mixed convection of low-Prandtlnumber fluids enclosed between the annuli of concentric and eccentric horizontal cylinders. The inner cylinder is assumed to be heated and rotating. The rotational Reynolds number considered is in the range where the effect of Taylor vortices is negligible. The Prandtl number of the fluid considered is in the range 0·01–1·0. The Rayleigh number considered is up to 106. A non-uniform mesh transformation technique coupled with the introduction of ‘false transient’ parameters to the vorticity and streamfunction-vorticity expressions was used to solve the governing set of equations. Results show that when the inner cylinder is made to rotate, the multicellular flow patterns observed in stationary cylindrical annuli subside in a manner depending on the Prandtl number of the fluids. Eventually the flow tends toward a uniform flow similar to that of a solid body rotation. For a fixed Rayleigh number and with a Prandtl number of the order of 1·0, when the inner cylinder is made to rotate, the mean Nusselt number is observed to decrease throughout the flow. For lower Prandtl number of the order 0·1–0·01 the mean Nusselt number remained fairly constant when the inner cylinder was made to rotate. The mean Nusselt numbers obtained were also compared with available data from other investigators.  相似文献   

3.
Unsteady convection driven by periodic horizontal displacements of a rectangular cavity heated from below is investigated numerically. The resonance effects clearly manifest themselves in the frequency dependence of the induced convection flow. These effects appear at a sufficient temperature difference (Grashof number G>104) and a considerable amplitude of the horizontal displacements of the cavity. The dependence of the parameters (resonance frequency and amplitude under resonance conditions) on the problem parameters (Grashof and Prandtl numbers and the cavity length/height ratio) and the method are found. Estimates show that the effects in question can be detected under laboratory conditions.  相似文献   

4.
In the present study laminar transition to oscillatory convection of fluids having different Prandtl numbers in a laterally heated vertical cylindrical enclosure for different aspect ratios (melt height to crucible radius) of 2–4 is investigated numerically for 0.01 ≤ Pr ≤ 10. Numerical solution to two-dimensional axisymmetric transient Navier Stokes equations and energy equation were solved by finite volume method using SIMPLE algorithm. Numerical results illustrate that there exists a critical Rayleigh number for each Prandtl number beyond which sustained laminar oscillatory flow sets in. The oscillatory regime was characterised by the oscillation of the average kinetic energy and average thermal energy of the melt. For a given aspect ratio, critical Rayleigh number increases with Pr upto 1 and then flattens. It was observed that for low Prandtl number fluids, Pr < 1.0, critical Rayleigh number is found to increase with increase in aspect ratio while for high Prandtl number fluids, Pr ≥ 1.0, it is found to decrease with increase in aspect ratio. The influence of aspect ratio on the transient behaviour of the melt volume below and above the critical Rayleigh number was studied.  相似文献   

5.
Two-dimensional numerical simulations of laminar natural convection in a partially cooled, differentially heated inclined cavities are performed. One of the cavity walls is entirely heated to a uniformly high temperature (heat source) while the opposite wall is partially cooled to a lower temperature (heat sink). The remaining walls are adiabatic. The tilt angle of the cavity is varied from 0° (heated from left) to −90° (heated from top). The fast false implicit transient scheme (FITS) algorithm, developed earlier by the same authors, is modified to solve the derived variables vorticity-streamfunction formulation. The effects of aspect ratio (AR), sink–source ratio and tilt angle on the average Nusselt number are examined through a parametric study; solutions are obtained for two Grashof numbers, 105 and 107. Flow patterns and isotherms are used to investigate the heat transfer and fluid flow mechanisms inside the cavity. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The generalized diagram of the critical Grashof numbers as functions of the Prandtl number is presented. The diagram shows the zones of occurrence of flow field and temperature fluctuations in the axisymmetric and three-dimensional formulations of the crystal growth model using the pulling from a melt. The structure of thermals at high Prandtl numbers and the distinctive features of the three-dimensional convection structure in the zones of stabilization and hazardous mode changeover at different Prandtl numbers are discussed. The effect of crystal rotation on the flow and temperature field patterns is estimated.  相似文献   

7.
 The problem of fully developed free convection two fluid magnetohydrodynamic flow in an inclined channel is investigated. The governing momentum and energy equations are coupled and highly nonlinear due to dissipation terms, solutions are found employing perturbation technique for small values of Pr · Ec (=ɛ) the product of Prandtl number and Eckert number. Effects of Grashof number, Hartmann number, inclination angle, the ratios of electrical conductivities, viscosities and heights of two fluids on the flow are explored. It is observed that the flow can be controlled effectively by suitable adjustment of the values for the ratios of heights, electrical conductivities and viscosities of the two fluids. Received on 10 December 1999  相似文献   

8.
In this paper, a direct numerical simulation of a fully developed turbulent flow and heat transfer are studied in a square duct with an imposed temperature difference between the vertical walls and the perfectly insulated horizontal walls. The natural convection is considered on the cross section in the duct. The numerical scheme employs a time-splitting method to integrate the three dimensional incompressible Navier-Stokes equation. The unsteady flow field was simulated at a Reynolds number of 400 based on the Mean friction velocity and the hydraulic diameter (Re m = 6200), while the Prandtl number (Pr) is assumed 0.71. Four different Grashof numbers (Gr = 104, 105, 106 and 107) are considered. The results show that the secondary flow and turbulent characteristics are not affected obviously at lower Grashof number (Gr ≤ 105) cases, while for the higher Grashof number cases, natural convection has an important effect, but the mean flow and mean temperature at the cross section are also affected strongly by Reynolds stresses. Compared with the laminar heat transfer at the same Grashof number, the intensity of the combined heat transfer is somewhat decreased.  相似文献   

9.
The structures of the convective motions and the nature of the heat transfer in a horizontal cylindrical layer are studied numerically for the Forchheimer model of a porous medium in the Boussinesq approximation. New asymmetric solutions of the equations of convection flow through a porous medium are found. Their development, domains of existence, and stability are investigated. One consists of a multivortex structure with asymmetric vortices in the near-polar region. Another asymmetric solution is realized at large Grashof numbers in the form of a convective plume deflected from the vertical. The threshold Grashof number of formation of the asymmetric motions depends on the Prandtl number and the cylindrical layer thickness.  相似文献   

10.
The effects of oscillatory motions that may present at a wall during vibrating conditions are studied on flow induced by natural convection and heat transfer inside an open-end vertical channel. The governing equations are non-dimensionalized and reduced to simpler forms. Analytical solutions are obtained for several limiting cases. The reduced governing equations are solved for various values of the controlling parameters. It is found that mean values of average Nusselt numbers are mainly affected by the Grashof number and the amplitude of the horizontal vibrations. Further, amplitudes of Nusselt numbers at the vibrated wall are decreased as the Grashof number increases for horizontal vibrations while they are increased as amplitudes of vibrations increase. It is also found that the squeezing/vibrational Reynolds number, Grashof number and amplitudes of vibrations have a great influence on the trends of stream lines and isotherms especially at low Grashof numbers. Finally, correlations that summarize the effects of the different controlling parameters are determined on the Nusselt numbers and their amplitudes at relatively low frequency of vibrations.  相似文献   

11.
The results of a numerical investigation of the joint effect of crystal and crubicle rotation on the flow stability at low Prandtl numbers (Pr=0.01 to 0.07) are presented. The regimes with an elevated stability threshold are determined for various combinations of crystal and crubicle rotations and the heat flux distributions over the growing crystal endface are obtained. The mechanisms of the loss of stability, as the critical values of the Grashof number and the rotation velocities are exceeded, are considered and a new regime of stable nonaxisymmetric flow is established.  相似文献   

12.
The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, staggered bundles of cylinders. Pitch to diameter ratios of 1·5 and 2·0 are considered for cylinders in equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a Prandtl number of 0·7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data.  相似文献   

13.
Three-dimensional advective flows in a horizontal cylinder of square section are numerically investigated under thermally insulated lateral boundaries and in the presence of a uniform longitudinal temperature gradient. The flow structure is shown to considerably depend on the Grashof number, the channel length, and the Prandtl number; depending on these parameters, the flow symmetrymode and its temporal behavior may be different. It is established that different cases of transition to oscillatory flow regimes are possible, namely, either with a preliminary violation of the flow symmetry (fork bifurcation) or without a change in the type of symmetry. The parameter range on which only the fork bifurcation is observable, while oscillatory flow patterns do not appear, is also determined.  相似文献   

14.
The results of the calculations and analysis of the effect of separate and joint rotation of the crystal and the crucible on the flow stability are presented for a wide range of Prandtl numbers (from 0.01 to 10). The regimes with a high stability threshold are determined for different combinations of the rotation velocities. It is shown that for high Prandtl numbers, simultaneous rotation of the crystal and the crucible makes it possible to increase the critical Grashof number in 9–12 times. A resultant diagram (map) of the limiting regimes of natural and mixed convection is constructed. Themethodology of control and analysis of 2D and 3D instability modes is discussed.  相似文献   

15.
A time-accurate Finite Volume method is used to investigate the two-dimensional buoyant flow in a closed cabinet containing two vertical heating plates. These are parallel, and form a channel at the centre of the cabinet enclosure. The cases of isothermal plates, and of uniform heat generation within them, are both considered for two values, 1×105 and 1×107, of the leading non-dimensional parameter, the Grashof number. Air (Pr = 0.71) is considered as the working fluid. Transient and long term thermal and flow behaviours are investigated. Steady-state solutions are asymptotically found at the lower Gr-value. However, time-dependent long-term solutions are predicted at Gr = 1×107. Received on 20 May 1998  相似文献   

16.
This paper considers the steady-state free convection flow arising from an infinitely long horizontal line source of heat embedded in the base of a vertical adiabatic surface when the ambient fluid is a non-Newtonian fluid for moderately large values of the generalized Grashof numbers by the method of matched asymptotic expansions. In particular, the second-order corrections to account for the non-boundary layer effects have been predicted. A family of numerical solutions for the power-law fluid behavior indexn ranging from 0.4 to 2.0 and for the Prandtl numberPr=10 and 100 are reported.  相似文献   

17.
The influence of vibrations of a cavity containing a fluid on the convective stability of the equilibrium has been investigated on a number of occasions [1]. The stability of convective flows in a modulated gravity field has not hitherto been studied systematically. There is only the paper of Baxi, Arpaci, and Vest [2], which contains fragmentary data corresponding to various values of the determining parameters of the problem. The present paper investigates the linear stability of convective flow in a vertical plane layer with walls at different temperatures in the presence of longitudinal harmonic vibrations of the cavity containing the fluid. It is assumed that the frequency of the vibrations is fairly high; the motion is described by the equations of the averaged convective motion. The stability boundaries of the flow with respect to monotonic perturbations in the region of Prandtl numbers 0 ? P ? 10 are determined. It is found that high-frequency vibrations have a destabilizing influence on the convective motion. At sufficiently large values of the vibration parameter, the flow becomes unstable at arbitrarily small values of the Grashof number, this being due to the mechanism of vibrational convection, which leads to instability even under conditions of weightlessness, when the main flow is absent [3, 4].  相似文献   

18.
The global Galerkin method is applied to the benchmark problem that considers an oscillatory regime of convection of air in a tall two‐dimensional rectangular cavity. The three most unstable modes of the linearized system of the Boussinesq equations are studied. The converged values of the critical Rayleigh numbers together with the corresponding oscillation frequencies are calculated for each mode. The oscillatory flow regimes corresponding to each of the three modes are approximated asymptotically. No direct time integration is applied. Good agreement with the previously published results obtained by solution of the time‐dependent Boussinesq equations is reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The natural convection of fresh water in a square cell is considered at a temperature close to the density inversion temperature for Grashof numbers 2.9 · 104 Gr 106. As a result of the numerical investigation, one steady-state and three self-oscillating regimes are found in addition to the three steady-state flows previously detected earlier and described for low Grashof numbers ( 0 Gr 2 · 105). The basic characteristics of the unsteady flows are analyzed by means of the Fourier method, the fundamental oscillation frequencies are found, and the flow evolution and the variation of the oscillation characteristics with increase in the Gr number are considered.  相似文献   

20.
The stability of advective flow in a rotating infinite horizontal fluid layer with rigid bound-aries is investigated for a small Prandtl number Pr = 0.1 and various Taylor numbers for perturbations of the hydrodynamic type. Within the framework of the linear theory of stability, neutral curves describing the dependence of the critical Grashof number on the wave number are obtained. The behavior of finite-amplitude perturbations beyond the stability threshold is studied numerically.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 29–38.Original Russian Text Copyright © 2005 by Schwarz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号