首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the numerical solution, using finite difference methods, of the hydrodynamic and turbulence energy equations which describe wind wave and tidally induced flow. Calculations are performed using staggered and non-staggered finite difference grids in the vertical, with various time discretizations of the production and dissipation terms in the turbulence energy equations. It is shown that the time discretization of these terms can significantly influence the stability of the solution. The effect of time filtering on the numerical stability of the solution is also considered. The form of the mixing length is shown to significantly influence the bed stress in wind wave problems. A no-slip condition is applied at the sea bed, and the associated high-shear bottom boundary layer is resolved by transforming the equations onto a logarithmic or log-linear co-ordinate system before applying the finite difference scheme. A computationally economic method is developed which remains stable even when a very fine vertical grid (over 200 points) is used with a time step of up to 30 min.  相似文献   

2.
A single-point model in the vertical is used to examine the coupling between tidal currents and wind-driven flows in shallow near-coastal regions. Calculations using both a linear slip and a no-slip condition at the sea bed clearly show that coupling between tidal and wind-driven currents cannot occur in a linear model with a time-independent eddy viscosity. However with a physically more realistic time-varying viscosity related to the flow field, coupling does occur, the magnitude of this non-linear interaction depending upon the change in eddy viscosity over a tidal cycle and the intensity of shear in the vertical. A point model in the vertical with flow induced by an oscillatory pressure gradient and an additional constant wind stress is used to examine the influence of viscosity parametrization and water depth upon this coupling. The solution in the vertical is accomplished using both a functional approach and a finite difference method. Some conclusions as to the relative merits of these approaches, particularly the use of a transformed grid in the case of high-shear surface and bed boundary layers, are made in the paper.  相似文献   

3.
多尺度有限差分方法求解波动方程   总被引:2,自引:1,他引:2  
小波分析是多尺度分析方法,本文利用具有紧支集的正交小波变换对有限差分方程进行空间多尺度近似,提出适合于层状介质波传问题数值计算的多尺度有限差分方法,将波动方程的求解转换到小波域中进行。利用小波基的自适应性与消失矩特性,有效减少了计算量、提高了稳定性,扩大了可求解的速度范围。地球物理勘探中的数值实例显示了算法具有良好效率。  相似文献   

4.
The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional(2D) tank are studied.The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid.A time-independent finite difference method,which is developed by Bang-fuh Chen,is used to solve the Euler equations for incompressible and inviscid fluids.The numer...  相似文献   

5.
A Galerkin finite element method and two finite difference techniques of the control volume variety have been used to study magnetohydrodynamic channel flows as a function of the Reynolds number, interaction parameter, electrode length and wall conductivity. The finite element and finite difference formulations use unequally spaced grids to accurately resolve the flow field near the channel wall and electrode edges where steep flow gradients are expected. It is shown that the axial velocity profiles are distorted into M-shapes by the applied electromagnetic field and that the distortion increases as the Reynolds number, interaction parameter and electrode length are increased. It is also shown that the finite element method predicts larger electromagnetic pinch effects at the electrode entrance and exit and larger pressure rises along the electrodes than the primitive-variable and streamfunction–vorticity finite difference formulations. However, the primitive-variable formulation predicts steeper axial velocity gradients at the channel walls and lower axial velocities at the channel centreline than the streamfunction–vorticity finite difference and the finite element methods. The differences between the results of the finite difference and finite element methods are attributed to the different grids used in the calculations and to the methods used to evaluate the pressure field. In particular, the computation of the velocity field from the streamfunction–vorticity formulation introduces computational noise, which is somewhat smoothed out when the pressure field is calculated by integrating the Navier–Stokes equations. It is also shown that the wall electric potential increases as the wall conductivity increases and that, at sufficiently high interaction parameters, recirculation zones may be created at the channel centreline, whereas the flow near the wall may show jet-like characteristics.  相似文献   

6.
This paper presents a finite difference time-domain technique for 2D problems of elastic wave scattering by cracks with interacting faces. The proposed technique introduces cracks into the finite difference model using a set of split computational nodes. The split-node pair is bound together when the crack is closed while the nodes move freely when open, thereby a unilateral contact condition is considered. The development of the open/close status is determined by solving the equation of motion so as to yield a non-negative crack opening displacement. To check validity of the proposed scheme, 1D and 2D scattering problems for which exact solutions are known are solved numerically. The 1D problem demonstrates accuracy and stability of the scheme in the presence of the crack-face interaction. The 2D problem, in which the crack-face interaction is not considered, shows that the proposed scheme can properly reproduce the stress singularity at the tip of the crack. Finally, scattered fields from cracks with interacting faces are investigated assuming a stick and a frictionless contact conditions. In particular, the directivity and higher-harmonics are investigated in conjunction with the pre-stress since those are the basic information required for a successful ultrasonic testing of closed cracks.  相似文献   

7.
A finite difference technique that incorporates a numerical mapping has been successfully applied to analyse both planar and axisymmetric Newtonian jets. A pressure gradient equation and a free-surface slope equation have been derived for free-surface iteration. The computation of pressure inside the jet surface using the pressure gradient equation is stable and accurate at high Reynolds numbers. The free-surface slope equation is needed for updating the free surface and is applicable for jets with strong surface tension effects. The present development can simulate the Newtonian jets for Reynolds numbers as high as 2000 and capillary number as low as 10?5. Numerical predictions by the present technique are close to the results of previous finite element simulations.  相似文献   

8.
Semidirect solution techniques can be an effective alternative to the more conventional iterative approaches used in many finite difference methods. This paper summarizes several semidirect techniques which generally have not been applied to the Navier–Stokes and energy equations in finite difference form. The methods presented use both successive substitution and Jacobian-based updates as well as two variations of Broyden's full matrix update. A hybrid method is also presented, as is a norm-reducing search technique that can be used to enhance the convergence characteristics of any semidirect approach. These methods have been compared with the well known iterative methods SIMPLE and SIMPLER. The comparison was performed on the natural convection and driven cavity problems. The semidirect methods proved to be reliably convergent without the need for a priori specification of variable under-relaxation factors, which was necessary with the iterative methods. Natural convection and driven cavity solutions have been readily obtained with the proposed methods for Rayleigh and Reynolds numbers up to 109 and 106 respectively. Of the semidirect techniques, the hybrid approach was the most robust. From an arbitrary zero initial guess this method was able to obtain a solution to the natural convection problem for Rayleigh numbers three orders of magnitude larger than was possible with the Newton-Raphson update. The computational effort required by the semidirect methods is comparable to that required by the iterative methods; however, the memory requirements can be significantly greater.  相似文献   

9.
本文利用常规有限元方法的计算结果,结合数值计算方法对振型函数进行[L]算子的微分计算,从而可方便迅速获得到复杂结构动应力响应,并对梁和板进行了计算,计算结果表明该方法具有较高的精度,较一般的动态有限元具有通用性强,计算简单等特点。  相似文献   

10.
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.  相似文献   

11.
An effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM–finite difference technique is used to model the wave motion and the corresponding boundary layer flow. A mixing‐length theory is used for turbulence modelling. The model results are in good agreement with previous physical and numerical experiments. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The extrudate swell phenomenon of a purely viscous fluid is analysed by solving simultaneously the Cauchy momentum equations along with the continuity equation by means of a finite difference method. The circular and planar jet flows of Newtonian and power-law fluids are simulated using a control volume finite difference method suggested by Patankar called SIMPLER (semi-implicit method for pressure-linked equations). This method uses the velocity components and pressure as the primitive variables and employs a staggered grid and control volume for each separate variable. The numerical results show good agreement with the analytical solution of the axisymmetric stick-slip problem and exhibit a Newtonian swelling ratio of 13.2% or 19.2% for a capillary or slit die respectively in accordance with previously reported experimental and numerical results. Shear thinning results in a decrease in swelling ratio, as does the introduction of gravity and surface tension.  相似文献   

13.
The numerical solution of a single first-order conservation equation by a least-squares finite element method is considered. Isoparametric bilinear quadrilateral elements are used. The accuracy is studied numerically and it is shown that the discrete equations associated with nodal points on the boundaries should be modified in order to obtain an accurate numerical solution.  相似文献   

14.
Propagation of periodic waves in the vicinity of irregular saw-tooth shaped boundary in finite difference models is investigated. The reflection of an incoming wave from a single saw-tooth boundary is found to be accompanied by a phase shift. It is shown that any wave mode propagating along such a boundary is trapped and decays in the direction normal to the boundary. A wave propagating along a channel with saw-tooth shaped lateral boundaries is influenced by the trapped waves, which leads to a reduction of the phase velocity. Phase velocities obtained from the present normal mode analysis are compared to velocities in numerical experiments. The agreement is excellent.  相似文献   

15.
The tidal energy industry is progressing rapidly, but there are still barriers to overcome to realise the commercial potential of this sector. Large magnitude and highly variable loads caused by waves acting on the turbine are of particular concern. Composite blades with in-built bend-twist elastic response may reduce these peak loads, by passively feathering with increasing thrust. This could decrease capital costs by lowering the design loads, and improve robustness through the mitigation of pitch mechanisms. In this study, the previous research is extended to examine the performance of bend-twist blades in combined wave–current flow, which will frequently be encountered in the field. A scaled 3 bladed turbine was tested in the flume at IFREMER with bend-twist composite blades and equivalent rigid blades, sequentially under current and co-directional wave–current cases. In agreement with previous research, when the turbine was operating in current alone at higher tip speed ratios the bend-twist blades reduced the mean thrust and power compared to the rigid blades. Under the specific wave–current condition tested the average loads were similar on both blade sets. Nevertheless, the bend-twist blades substantially reduced the magnitudes of the average thrust and torque fluctuations per wave cycle, by up to 10% and 14% respectively.  相似文献   

16.
An improved treatment for the Harten–Yee and Chakravarthy–Osher TVD numerical flux functions in general co-ordinates is presented. The proposed formulation is demonstrated by a series of numerical experiments for three-dimensional flows around the ONERA-M6 wing. The numerical results indicate that it is important to use a suitable artificial compression parameter in order to obtain more accurate solutions around the leading edge of the wing. The two TVD numerical fluxes give excellent results: they capture the shock wave without numerical oscillations, they capture the rapid expansion around the leading edge sharply, they have self-adjusting mechanisms regarding numerical viscosity and they also have robustness.  相似文献   

17.
We present a systematic investigation of several discretization approaches for transient elastodynamic wave propagation problems. This comparison includes a Finite Difference, a Finite Volume, a Finite Element, a Spectral Element and the Scaled Boundary Finite Element Method. Numerical examples are given for simple geometries with normalized parameters, for heterogeneous materials as well as for structures with arbitrarily shaped material interfaces. General conclusions regarding the accuracy of the methods are presented. Based on the essential numerical examples an expansion of the results to a wide range of problems and thus to numerous fields of application is possible.  相似文献   

18.
New higher-order finite elements of enhanced convergence properties for acoustic wave simulation are presented in the paper. The element matrices are obtained by combining modal synthesis and optimization techniques in order to achieve minimum errors of higher modes of the computational domain. As a result, simulation models of propagating wave pulses require a smaller number of finite element divisions per wavelength compared to the conventional element model thus significantly reducing computational costs. Though finite element matrices are obtained in optimization, the resulting patterns of the matrices are versatile and further can be used in any wave propagation model. The mass matrices of the elements are diagonal, so explicit time integration schemes are applicable. The usage of new elements is especially efficient in situations where wavelengths of the simulated signal are much shorter than the dimensions of the computational domain. This is referred to as short wave propagation analysis. The results of wave propagation simulation for ultrasonic measurements are presented as application examples. The B-scans and computed dispersion curves are provided for visual interpretation of the results.  相似文献   

19.
Plane slow flow of a Maxwell fluid over a transverse slot is considered. Results are computed by a finite difference method (FDM) using the differential form of the constitutive equation, and by a finite element method (FEM) using the integral form. Even on fine grids, the two methods produce different results, particularly at low De. However, extrapolation of the results of zero mesh spacing shows excellent agreement between the two methods. Hence both methods are convergent with mesh refinement, but high accuracy would require extremely fine meshes. An explanation is provided for why it is unreasonable to expect either method accurately to obtain the singular limit of Pe/N1 as De → 0. Also an explanation for the errors at very low De is offered. If we presume the second-order fluid (SOE) result holds for very low De (ie. Pe = N1/4), both the FEM and FDM predict only minor deviation from this value for the Maxwell fluid, in the range 0 ⩽ De ⩽ 1.  相似文献   

20.
A finite difference simulation method is developed for 3D flow about a body of complex geometry. The Navier–Stokes equation is approximated by a high-order-accurate difference scheme in the framework of rectangular co-ordinate systems. The configuration of the 3D body is represented by use of both surface porosity and volume porosity and the no-slip body boundary conditions are approximately implemented on the boundary cells. The validity of the method is demonstrated by a numerical test of flow past a sphere at a Reynolds number of 1000. The complicated structure of separated vortices is well revealed by this test computation. The versatility of the method is shown by application to an ocean-engineering problem of flow about a bay with an island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号