首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of the [M? OH]+ ions of m- and pethylnitrobenzene have been compared by measurements of metastable ion spectra, collisional activation spectra, kinetic energy releases and critical energies for the formation of these ions and their subsequent decomposition. Normalized rates of fragmentation of metastable molecular ions and metastable [M? OH]+ ions have been compared for ion lifetimes up to 30 μs. The energy measurements fail to distinguish between the structures of the [M? OH]+ ions, but the normalized fragmentation rates and the collisional activation spectra show their structures to be different.  相似文献   

2.
The [M]+˙ → [M ? Cl]+ reaction in a series of m- and p-X substituted chlorobenzenes has been studied, utilizing a simple kinetic approach, comparison of metastable ion relative abundances, and by measurement of ionization and appearance potentials. All evidence obtained is consistent with rearrangement prior to cleavage in the molecular ions, in which substituent position becomes effectively randomized. These findings are related to known hydrogen randomization reactions occurring in either the molecular ion or [M ? Cl] ion of chlorobenzenes. Mechanisms involving carbon scrambling via such species as ionized benzvalenes or prismanes, or ring-opening to isomeric acyclic molecular ions in which hydrogen randomization might occur can be entertained, but mechanisms involving simple hydrogen shifts in the intact benzene ring appear less likely.  相似文献   

3.
An [M ? 31]+ ion was a prominent fragment in the mass spectra of three ortho-methoxy-phenyl-2-propanone oximes and is shown to be due to the expulsion of a methoxyl radical from the molecular ion as a result of an ortho-effect. In contrast, an [M ? 31]+ ion was absent from the spectra of a structurally related ketone and a hydroxylamine, and was not observed in the spectra of meta- and para-methoxyphenyl-2-propanone oximes.  相似文献   

4.
It has been noticed that the major part of the loss of ?H from the molecular ion of most of the o-methoxythioamides results from an ortho effect of the methoxy group. Comparison of the MIKE spectra of the [M? SH]+ of 1-(2-methoxyphenylthioxomethyl)piperidine and 1-(2-methoxyphenylthioxomethyl)pyrrolidine with the MIKE spectra of [M? SH]+ of the corresponding unsubstituted compounds, reported earlier, indicated two parallel pathways for the formation of [M? SH]+ in the o-methoxy compounds. In the first pathway, as has been noticed in thioamides in general, the loss of ?H involves the migration of either the α-hydrogen in the amine moiety or the hydrogen attached to nitrogen. In the second pathway, the migration of a hydrogen from the o-methoxy group to the sulphur atom followed by ejection of SH from the molecular ion leads to a stable cyclized ion. Interesting secondary fragmentations as a consequence of this ortho effect have also been noticed.  相似文献   

5.
The mass spectral fragmentations of methyl mono- and dichlorobutanates have been studied. Deutrium labelling and metastable ion analysis were used to elucidate the fragmentation mechanisms. The molecular ion peaks of the esters are weak and show only in the spectra of the monochloro isomers. A McLafferty rearrangement gives the base peaks in the spectra of methyl 2-chloro-, 4-chloro- and 4,4-dichlorobutanoate; α-cleavage, [COOCH3]+, in methyl 2,2- and 2,4-dichlorobutanoate; [M? Cl]+, in methyl 3-chlorobutanoate; [M? Cl? HCl]+, in methyl 3,4-dichlorobutanoate; [M? Cl? CH2CO]+, in methyl 3,3-dichlorobutanoate and [M? Cl? COOCH3], in methyl erythro- and threo-2,3-dichlorobutanoate. The mass spectra of the stereoisomers are nearly identical, the loss of a chlorine atom and the McLafferty rearrangement giving the higher peaks in the spectrum of the threo form.  相似文献   

6.
The formation of the [M? 43]+ ion in equilenin is due mainly to elimination of Me radical from the [M? CO]+ ion and, to a lesser extent, to CO loss from the [M? Me]+ ion. In 14β-isoequilenin the [M? CO]+ ion is absent, and the formation of [M? 43]+ occurs via the [M? Me]+ ion. This makes the determination of the mode of junction of the rings C and D in the equilenin series possible, using high resolution mass spectra, even when only one stereoisomer is available.  相似文献   

7.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

8.
Breakdown graphs have been constructed from charge exchange data for the epimeric 2-methyl-, 3-methyl- and 4-methyl-cyclohexanols. Although the breakdown graphs for epimeric pairs are essentially identical above ~12 eV recombination energy, significant differences are observed for the epimeric 2-methyl- and 4-methyl-cyclohexanols at low internal energies. For the 2-methylcyclohexanols the ratio ([M? H2O]/[M])cis/([M? H2O]/[M])trans is 3.2 in the [C6F6] charge exchange mass spectra. This is attributed to both energetic and conformational effects which favour the stereospecific cis-1,4-H2O elimination for the cis epimer. The breakdown graph for trans-4-methylcyclohexanol shows a sharp peak in the abundance of the [M? H2O] ion at ~10 eV recombination energy which is absent from the breakdown graph for the cis epimer. This peak is attributed to the stereospecific cis-1,4-elimination of water from the molecular ion of the trans isomer; the reaction appears to have a low critical energy but a very unfavourable frequency factor, and alternative modes of water loss common to both epimers are observed at higher energies. As a result, in the [C6F6] charge exchange mass spectra the ([M? H2O]/[M])trans/([M? H2O]/[M])cis ratio is ~24, compared to the value of 13 observed in the 70 eV EI mass spectra. No differences are observed in either the metastable ion abundances or the associated kinetic energy releases for epimeric molecules.  相似文献   

9.
Hydrozen randomization precedes the formation of M ? H· and M ? CH3· species from the stilbene molecular ion at 15 eV. The carbon atom involved in the M ? CH3· elimination originates randomly from the whole molecule. The [M ? 15] ion (m/e 165) in the spectra of stilbene and 9,10-dihydrophenanthrene is produced from a common ion.  相似文献   

10.
Electron-impact studies of diazadiphosphetidines,[YF2PNMe]2(Y? F,Me, Ph, MeO,2,5-Me2C6H3, and m-CF3C6H4) are reported, the most abundant fragments corresponding to m/e [M/2–1]+, [M/2]+ and [M/2–1]+. It is concluded from metastable data that formation of the noval rearrangement ion, [M]+→[M/2+1]+is predominantly due to an electron-impact process. Variable temperature spectra of(F3PNMe)2, (i.e. for Y=F), suggest that ions of m/e [M/2-1]+are formed, in part, by a thermal process. For the compound [(m-CF3C6H4)F2PNMe]2 a well resolved negative ion spectrum has been obtained, with the molecular ion present in 100% abundance.  相似文献   

11.
From a collisional activation spectral study it has been found that certain triterpene alcohols with an ursane or oleanane skeleton undergo oxidation to the corresponding ketones under chemical ionization (NH3) conditions giving rise to abundant [M + NH4 ? 2]+ ions. Mass-analysed ion kinetic energy and B2/E scan results indicate that both [M + NH4]+ and [M + N2H7 ? 2]+ ions contribute to the formation of the [M + NH4 ? 2]+ ion.  相似文献   

12.
The positive electron impact (EI) and isobutane chemical ionization (CI) mass spectra of six nitramine nitrates were studied with the aid of some accurate mass measurements. In the EI spectra, β fission relative to both the nitramine and nitrate ester is important. In the CI spectra a major ion occurs at [MH – 45]+ and was found to be mainly due to [M + 2H ? NO2]+. All of the compounds except N-(2 hydroxyethyl)-N-(2′,4′,6′-trinitrophenyl)nitramine nitrate gave an [MH]+ ion. The [MH – 45]+ ion in the isobutane CI mass spectra of tetryl is also due to [M + 2H ? NO2]+.  相似文献   

13.
Mass Spectra of unsubstituted, 2-methyl-, 3-methyl and 2,3-dimethylchromones were examined. These compounds showed [RDA]+˙ and [RDA + H]+ ions as characteristc ions, together with [M? H]+,[M? CO]+˙,[M? CHO]+ and [RDA? CO]+˙ ions. Based on deuterium labelling experiments and measurement of metastable peaks by the ion kinetic energy defocusing technique, the origin of transferred hydrogen in the [RDA + H]+ ion was clarified. The mechanism of the [RDA + H]+ ion formation is discussed.  相似文献   

14.
The metastable ions [M]2+, [M – H]2+· and [M – H2]2+ from malononitrile fragment by loss of [CH]+, [C]+· and [C]+·, respectively. The reaction of the molecular ion involves the methylene and nitrile carbon atoms in the statistical probability ratio, while that of [M – H]2+· involves exclusively the nitrile carbon and that of [M ? H2]2+ involves an approximately equal contribution, from both sources. It is suggested that the metastable molecular ion fragments through a bipyrimidal intermediate.  相似文献   

15.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

16.
Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the [M? CH3]+ ion is represented partly by an α-hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH3? a hydrogen atom and C6H6, generation the CH3CO+ ion. Diffuse peaks, found in the spectra of of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C2H4O, possibly via a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens. Mass spectra of 1-phenylpropanol-2 and its analogues, specifically, deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the ortho-positions of the phenyl ring via a McLafferty rearrangement, generating the [M ? C2H4O]+ ion. Furtherore, an eight-membered ring structure is proposed for the [M ? CH3]+ ion to explain the loss of H2O and C2H2O from this ion after an extensive scrambling of hydrogen atoms.  相似文献   

17.
A systematic study on the electron impact mass spectra of all nine chlorinated catechols in presented. Metastable ion analysis was used to elucidate the fragmentation pathways. The influence of the position of the chloro substituents can be used to distinguish the structural isomers. In this respect the most characteristic fragment ions are [M? CHl]+˙, [M? HCOOH]+˙, [M? COCl]+, [M? HCl? CO]+˙, [M? CHOCl]+˙ and [M? HCl? HCl]+˙.  相似文献   

18.
In the electron impact mass spectra of some alkyl α- and β-hydroxyesters (introduced using the gas chromatography/mass spectrometry (GC/MS) technique), the absence of the molecular ion M and the presence of the [M + 1]+ ion instead is observed. This phenomenon is especially characteristic of C3? C6 glycolates and diethyl malate, and is due to chemical auto-ionization—ion-molecule reactions in the high concentration gradient at the top of the GC peak. The existence of the [M ? 2], [M ?1]+ and M ions in the mass spectra of other β- and α-hydroxyesters is discussed.  相似文献   

19.
The ion intensity ratios from competing α-fissions of 30 tertiary aliphatic alcohols and 24 ethers of tertiary alcohols have been measured at 13 eV. The intensity ratios of ions [M ? alkyl1]+ and [M ? alkyl2]+ agree well with the reciprocal mass ratios of the respective ions in the case when the alkyl groups are not methyl (ion mass effect). The intensity ratios of [M ? alkyl]+ and [M ? methyl]+ are always too high, but intensity ratios of [M ? alkyl1]+ and [M ? alkyl2]+ may be derived indirectly from them, which also agree well with those values expected from the ion mass effect. By the indirect method it is shown, that for the 2,2-dialkyl-1,3-dioxolanes (ethylene ketals) the ion mass effect plays a dominant role too.  相似文献   

20.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号