首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The semicontinuous seeded emulsion copolymerization of vinyl acetate and methyl acrylate was investigated. The effect of type of process (starved process versus semi-starved process), type of feed (neat monomer addition versus monomer emulsion addition), amount of seed initially charged in the reactor, and feed rate on the time evolution of the overall conversion, copolymer composition, and polymer particle size was analyzed. It was found that, in the case of the starved process, both monomers, but mainly vinyl acetate, accumulated in the reactor. The preferential accumulation of vinyle acetate resulted in a drift of the copolymer composition. Both monomers accumulation and copolymer composition drift were reduced by increasing the amount of seed initially charged in the reactor and by decreasing the feed rate. For the semi-starved process, it was found that a vinyl aceatate rich copolymer was formed when a low methyl acrylate feed was used, whereas a methyl acrylate rich copolymer was obtained at high methyl acrylate feed rates. For both starved process and semi-starved process, the total number of polymer particles, after an initial increase, reached a plateau value which was the same in all of the experiments carried out. These results were analyzed by means of a mathematical model developed for this system.  相似文献   

2.
We carried out emulsion homopolymerizations and copolymerizations of butyl acrylate (BuA) and methyl methacrylate (MMA) with different types and concentrations of surfactants to determine the influence of these parameters on the particle size and particle size distribution and to elucidate the mechanism of particle formation. As expected, the mechanisms of nucleation above and below the critical micelle concentration were very different; however, it was also found that the presence of partially soluble monomers such as MMA in the water phase had a significant influence on the critical micelle concentration of Triton X‐405 (>50%). In addition, the nucleation mechanism during copolymerization seemed to be dominated by BuA, with the number of particles per liter being very similar to the number nucleated during its homopolymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2832–2846, 2001  相似文献   

3.
The effect of a chain‐transfer agent (CTA) on the kinetics and molecular weight distribution of the methyl methacrylate/butyl acrylate semicontinuous emulsion polymerization was investigated. The dodecanethiol had a slight effect on the reaction rate but significantly affected the secondary nucleation. The effect of the CTA concentration on the gel formation and the effect of the reaction conditions on the mass‐transfer limitations of the CTA are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 367–375, 2000  相似文献   

4.
The soapless emulsion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containing various concentrations of sodium methacrylate (NaMA) or methacrylic acid (MMA) is studied. The hydrosoluble yields in final latexes are not larger than 1.3–5%, depending on the concentration of NaMA used. Below 25% conversion, the change of conversion with reaction time follows the square rule and the particle size is proportional to the 2/3 power of time. Above 25% conversion, serious gel effect occurs, and the conversion follows the seventh power on time and the growth of particle diameter obeys the 2.5 power on time. The multiple glass transition (Tg) occur below 20% conversion, where monomer droplets exist. NaMA added induces more Tgs. The effect of molecular weight of the copolymers obtained on Tg (even the molecular weight distributions were shown to be shouldertype bimodal) is estimated to be insignificant. Thus, the heterogeneity of copolymer compositions for multiple Tgs is ascribed to be caused from neither the molecular weight heterogeneity nor the shifts in compositions due to the difference of the monomer reactivity ratios. Referring to the results mentioned, we assume the sublayer surrounding the particle, rich with SO4? and COO? groups, and the concentration gradients of monomers in particles to illustrate particle morphology. In addition, the relatively hydrophilic sublayer is proposed to be closely relative with the occurrence of the composition heterogeneity in particles.  相似文献   

5.
In the dispersion copolymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA), the particle size increases with an increasing MMA fraction in the comonomer. The power dependence of the particle size on the initiator concentration also increases with an increasing MMA concentration. Similar to what can be found in the homopolymerizations, two populations can be observed in the molecular weight distributions of the copolymers. Core–shell structured particles with a poly(methyl methacrylate)-rich core and a poly(n-butyl acrylate)-rich shell result from the copolymerizations because of the significantly different reactivity ratios. The reaction rates of the dispersion copolymerization are lower than those of the homopolymerization of BA and close to or lower than those of the homopolymerization of MMA, depending on the ratio of the monomers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2105–2112, 2007  相似文献   

6.
Bis(aqua)bis((difluoroboryl)dimethylglyoximate)cobalt(II) (COBF) has proven to be a very effective catalytic chain transfer agent in the copolymerization of MA and MMA. The chain transfer activity depends on the fraction of MMA in the monomer feed and the total radical concentration. The polymerization can be described by a model that combines features of catalytic chain transfer for MMA homopolymerization and cobalt mediated controlled radical polymerization of MA. According to the model part of the COBF is covalently bonded to MA‐ended polymeric radicals and cannot take part in the chain transfer step. The model can also account for the observed inhibition time that occurs at high chain transfer agent concentration and low fraction of MMA in the monomer feed.  相似文献   

7.
Pseudo-living radical copolymerization of methyl methacrylate and methyl acrylate under reversible addition-fragmentation chain transfer in a mass in the presence of reversible chain transfer agents of different nature was implemented. A comparison of physical and mechanical properties of narrowly dispersed copolymers was performed as well as copolymers obtained by uncontrolled radical polymerization.  相似文献   

8.
Methyl methacrylate has been copolymerized with ethyl acrylate at temperatures between 35 and 65′ using 2,2′-azobisisobutyronitrile as initiator. For both polymer radicals, crosspropagation is favoured energetically whereas self-propagation is favoured entropically. Values of Arrhenius parameters indicate that cross-propagation predominates for ethyl acrylate and self-propagation for methyl methacrylate.  相似文献   

9.
A mathematical model for the unseeded emulsion copolymerization of styrene and methyl methacrylate has been developed. This model, which includes a new rate coefficient for radical desorption, was used to analyze the effect of the styrene/methyl methacrylate molar ratio in the initial charge on the number of particles, overall conversion and copolymer composition. It was found that the number of particles increased with the methyl methacrylate content and that a drift of the copolymer composition resulted during the polymerization of styrene/methyl methacrylate molar ratios other than 50/50. Good agreement between experimental results and model predictions was achieved.  相似文献   

10.
A series of methyl methacrylate, butyl acrylate, and phosphonated methacrylate (MAPHOS) copolymers were prepared by seeded semicontinuous emulsion polymerization under monomer‐starved conditions by varying the amount and nature of phosphonated methacrylates (diester, monoacid, and diacid). The effects on the kinetics, molecular weight distribution, and particle size distribution were investigated. The molecular weights and particle growth were affected by the amount of acidic MAPHOS in the recipe. Secondary nucleation occurred above a critical concentration of acidic MAPHOS (5 wt %). Characterization of the latices by elemental analysis provided information on the phosphonic acid location and showed that phosphonic oligomers were formed in the aqueous phase. Particle size data and electrophoretic behavior of the latex afforded a discussion on the particle surface morphology. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2469–2480, 2003  相似文献   

11.
The effect of itaconic (IA) and fumaric (FA) acids, in the emulsion copolymerization of methyl methacrylate (MMA) with n-butyl acrylate (BA) is presented in this work. The effect of functional monomers on the overall conversion, on the colloidal properties of the latexes as well as on the distribution of the carboxylic groups (buried, particle surface and serum) was examined. The effect of the pH on the partitioning of IA and FA on the copolymerizations was also examined in order to better understand the role of these functional monomers. The carboxylic groups present in the cleaned latexes were analyzed using conductimetry and manual titration with a solution of sodium hydroxide in methanol. The results of these analyses showed that it was possible to determine the distribution profile of the carboxylic groups in the latexes (buried, particle surface and serum). It was demonstrated that IA and FA were distributed differently throughout the three phases of the emulsion, with these differences depending on the solubility of the corresponding monomer.  相似文献   

12.
Dimers of methyl, ethyl, and n-butyl acrylate were synthesized in good yield through the use of a phosphine catalyst. The dimers synthesized in this manner have one double bond. The activity of this double bond was investigated in copolymerization reactions with styrene. The methyl acrylate dimer proved to have a slightly more favorable reactivity ratio than either the ethyl or n-butyl acrylate dimers.  相似文献   

13.
14.
The reactivity of 2-vinylbenzofuran in copolymerization reactions with n-butyl acrylate, ethyl acrylate, and methyl methacrylate was investigated. The vinylbenzofuran was found to be a very reactive monomer with the growing chain preferring to react with this monomer no matter what its terminus. Reactivity ratios were calculated using a nonlinear least squares error-in-variables method, which gives more reliable values of r1 and r2.  相似文献   

15.
Butyl acrylate (BA) and methyl methacrylate (MMA) have been copolymerized in a 3 mol/L benzene solution using 2,2′-azobis(isobutyronitrile) (AIBN) as initiator over a wide composition and conversion range. The overall copolymerization parameter kp/kt1/2 and the composition of the copolymer formed have been measured as a function of conversion. Theoretical values of the coupled parameter kp/kt1/2 calculated from the implicit penultimate unit model and those of cumulative copolymer composition, determined from the Mayo—Lewis terminal model, have been correlated with those experimentally obtained. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1961–1965, 1997  相似文献   

16.
Poly(methyl methacrylate), polystyrene, and poly(styrene-co-methyl methacrylate) cationically stabilized latexes with up to 25% solid content were prepared by surfactant-free emulsion polymerization (SFEP) employing 1 mol % 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) as an initiator and stabilizer (inisurf) with respect to monomer at 70 °C. The latexes had 200–500 nm z-diameter and a very narrow size distribution (PDI < 0.05). The stabilizing amidinium moieties from VA-044 were covalently bound to the particles. After drying in air, poly(styrene-co-methyl methacrylate), PS-co-PMMA latexes were easily redispersible in water simply by addition of water and a few minutes of gentle stirring. The redispersed latex particles had colloidal characteristics very similar to the original latex particles in terms of polydispersity, size, and zeta potential. In contrast, latexes prepared with a similar formulation but using a conventional cationic surfactant (CTAB) that was not covalently bound to the particles were not redispersible. This is the simplest method reported so far for the preparation of redispersible latexes that do not use high stabilizer concentrations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2376–2381  相似文献   

17.
Copolymerizations of tributyltin methacrylate (M1) with methyl acrylate, ethyl acrylate, n-butyl acrylate and acrylonitrile were carried out in solution at 70° using azobisisobutyronitrile as initiator. Copolymer compositions were determined by tin analysis; monomer reactivity ratios were calculated by Fineman-Ross and Kelen-Tüdös methods. The reactivities of acrylic esters decrease as the alkyl group becomes bulkier. Azeotropic copolymers could be formed from tributyltin methacrylate with butyl acrylate and with acrylonitrile. The structures of M1 and its azeotropic copolymers have been investigated by infrared spectroscopy.  相似文献   

18.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

19.
Densities of the binary systems of cyclohexane with ethyl acrylate (EA), butyl acrylate (BA), methyl methacrylate (MMA), and styrene have been measured as a function of the composition, at 298.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densitometer. The calculated excess volumes were correlated with the Redlich–Kister equation and with a series of Legendre polynomials. The excess volumes are positive for the systems reported here.  相似文献   

20.
We have investigated the γ-radiation-initiated polymerization of n-butyl acrylate (BA) and of methyl methacrylate (MMA) in aqueous emulsions stabilized with sodium lauryl sulfate (SLS). The reaction rate, as measured by a nonabsolute thermocouple technique, varies as the square root of emulsifier concentration for both monomers. In the case of BA, the dose rate exponent of the reaction rate is 0.7 ± 0.3, whereas the corresponding value for MMA is approximately 0.4. The overall activation energy of the BA polymerization is close to zero, whereas for MMA a value of 4.8 ± 2.1 kcal/mole has been found. The poly(butyl acrylate) molecular weight is effectively independent of soap concentration and of dose rate but decreases as the reaction temperature is increased in the range 30–70°C. The general conclusion drawn from this work is that these radiation-induced emulsion polymerizations differ little from conventionally initiated systems insofar as the reaction kinetics are concerned. Poly(butyl acrylate-g-methyl methacrylate) copolymers have been prepared by a direct irradiation method involving a poly(butyl acrylate) prepolymer seed latex. Some physical properties of this material have been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号