首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermotropic liquid crystalline (LC) copolyethers have been synthesized from 1,9-dibromononane, a nonmesogenic bisphenol (4,4′-isopropylidenediphenol [BPA]) and a mesogenic bisphenol (4,4′-dihydroxybiphenyl [HB]) by a two-phase (organic solvent—aqueous NaOH) phase-transfer catalyzed polyetherification. LC polyethers were obtained for copolymers containing as much as 70 mol % BPA. Optical polarizing microscopy and DSC have revealed smectic mesomorphism for all the copolyethers. The influence of both copolymer composition and microstructural changes, including the nature of the chain ends, upon the mesomorphic properties of these copolyethers have been discussed.  相似文献   

2.
The possibility of using a soluble polyfunctional imide-containing oligomer, oligomaleimidohydroxyphenylene, as a modifier of E-41r epoxy 4,4′-isopropylidenediphenol resin was examined. Introduction of this modifier in an amount from 1.0 to 3.0 wt % enhances the hardness, impact strength, adhesion, and corrosion resistance of imide-containing epoxy 4,4′-isopropylidenediphenol coatings on steel surfaces, i.e., improves their operation characteristics.  相似文献   

3.
Several new random and block copoly(imide siloxane)s have been prepared by the solution polycondensation of commercially available 4,4′-oxydianiline (ODA) and amino-propyl terminated polydimethylsiloxane (APPS) with 4,4′-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA). The siloxane loading was kept to 10, 20, 30, 40 and 50 wt% in the copolymers. The random copolymers were prepared by a one pot solution imidization technique, and two pot solution imidization technique was adopted for the synthesis of the block copolymers. The diamine ODA and the dianhydride 6FDA composed the hard block segment, while APPS and 6FDA composed the soft block segment. The hard block length was kept constant while the soft block lengths were varied by varying the siloxane loading. Accordingly, block copoly(imide siloxane)s were prepared on increasing the soft block lengths (DP) from 3 to 6, 10, 18 and 36 for fixed hard block length of 22. The resulting polymers have been well characterized by IR, NMR and GPC techniques. Thermal and mechanical properties of the random and block copolymers were compared with the already reported homopolyimide without siloxane moiety.  相似文献   

4.
A new monomer, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl(BPOBDP), was synthesized via a two‐step synthetic procedure. A series of novel poly(ether sulfone ether ketone ketone)/poly(ether ketone diphenyl ketone ether ketone ketone) copolymers were prepared by electrophilic Friedel–Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of 4,4′‐diphenoxydiphenylsulfone (DPODPS) and 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP), in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers with 10–50 mol% DPODPS are semicrystalline and have remarkably increased Tgs over commercially available PEEK and PEKK. The copolymers with 40–50 mol% DPODPS had not only high Tgs of 170–172°C, but also moderate Tms of 326–333°C, which are extremely suitable for melt processing. These copolymers have tensile strengths of 96.5–108.1 MPa, Young's moduli of 1.98–3.05 GPa, and elongations at break of 13–26% and exhibit excellent thermal stability and good resistance to acidity, alkali, and common organic solvents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The present revolution in novel organic materials is driven by the synthesis of new materials exhibiting specific functional properties. Traces of silicon compounds are often present in these materials and, although the bulk concentrations of these impurities may be low, segregation can seriously modify the surface composition. Surfaces and interfaces play an important role in many applications, and the intrinsic properties of the materials are thus often obscured by the presence of segregated impurities. By studying silicon impurity segregation in poly‐dialkoxy phenylenevinylene (PPV), polycarbonate and dendrimer macromolecules, we demonstrate how low‐energy ion scattering may be used to determine the surface impurity fraction and to observe which groups at the surface are shielded by the segregated species. We demonstrate that the performance of PPV‐ based light‐emitting diodes is significantly reduced for submonolayer coverages of siloxanes. We find that the kinetics of the segregation process depend strongly on the materials and the sample preparation conditions. We find that the presence of solvents is needed to enable segregation at room temperature. Heating does enable siloxane impurity segregation in polycarbonate in the solid phase, whereas for polydimethylsiloxane in PPV films we find that segregation in the solid phase does not occur up to 200 °C. The siloxane molecules are found to segregate to preferential sites at the surface, shielding the polar groups. Finally, we demonstrate that purification of the surface is often possible through simple procedures that provide an easy way to study the intrinsic properties of the materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Four series of fully aromatic polycarbonates were prepared by using melt polycondensation from various novel phenylene diphenyl dicarbonates: 1,4-phenylenc diphenyl dicarbonate, 1,3-phenylene diphenyl dicarbonate, methyl-1,4-phenylene diphenyl dicarbonate, and chloro-1,4-phenylene diphenyl dicarbonate with various diols—4,4′-biphenyl diol, hydroquinone, 2,7-naphthalene diol and 1,5-naphthalene diol, respectively. The thermotropic liquid crystalline properties of synthesized polycarbonates were investigated by: (1) examination of the melt birefringence and stir opalescence by a polarizing microscope equipped with a heating stage, (2) characterization by a differential scanning calorimeter (DSC), and (3) analysis of the wide angle x-ray diffraction. It was found that the 1,3-phenylene unit is compensated for the nonlinearity of the carbonate group, and polycarbonates which contain this bent shape unit showed excellent wide mesophase transition in this study. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Differential scanning calorimetry (DSC) has been applied to characterize the glass transition behavior of the blends formed by bisphenol-A polycarbonate (PC) with a tetrafunctional epoxy (tetraglycidyl-4,4′-diaminodiphenyl methane, TGDDM) cured with 4,4′-diaminodiphenylsulphone (DDS). A rare miscibility in the complete composition range has been demonstrated in these blends. Additionally, the blend morphology was examined using scanning electron microscopy (SEM) and a homogeneous single-phase PC/epoxy network has been observed in the blends of all compositions. Moreover, polycarbonate incorporation has been found to exert a distinct effect on the cure behavior of the epoxy blends. The cure reaction rates for the epoxy-PC blends were significantly higher due to the presence of PC. In addition, the cure mechanism of the epoxy blends was no longer autocatalytic. An n-th order reaction mechanism with n = 1.2 to 1.5 has been observed for the blends of DDS-cured epoxy with PC of various compositions studied using DSC. The proposed n-th order kinetic model has been found to describe well the cure behavior of the epoxy/PC blends up to the vitrification point. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Four series of fully aromatic thermotropic liquid crystalline polycarbonates were prepared by melt polycondensation from various novel phenylene diphenyl dicarbonates with monomers, such as hydroquinone, methylhydroquinone, chlorohydroquinone, resorcinol, bisphenol A, 4,4′-dihydroxydiphenylsulfone, or phenylhydroquinone, respectively. The thermotropic liquid crystalline properties were studied by polarizing microscope with a heating stage, differential scanning calorimeter (DSC), and wide-angle x-ray diffraction (WAXD). It was found that the nonlinearity of the carbonate group was compensated by resorcinol (1,3-phenylene unit), a bent shape unit. Nematic melts were found for the resulting polycarbonates. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
A tetrafunctional epoxy monomer, N,N,N′-N′-tetraglycidyl-4,4′-diaminodiphenyl methane (TGDDM), has demonstrated to be a highly efficient reactive compatibilizer in compatibilizing the immiscible and incompatible polymer blends of polyamide-6 (PA6) and poly(2,6-dimethyl-1,4-phenylene ether) (PPE). This epoxy coupler can react with both PA6 and PPE to form various PA6-co-TGDDM-co-PPE mixed copolymers. These interfacially formed PA6-co-TGDDM-co-PPE copolymers tend to anchor along the interface to reduce the interfacial tension and result in finer phase domains and enhanced interfacial adhesion. A simple one-step melt blending has demonstrated to be more efficient in producing a better compatibilized PA6/PPE blend than a two-step sequential blending. The mechanical property improvement of the compatibilized blend over the uncompatibilized counterpart is very drastic, by considering the addition of a very small amount, a few fractions of 1%, of this epoxy coupling agent. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1805–1819, 1998  相似文献   

11.
A new type of epoxy resin containing 4,4′-diphenylether moiety in the backbone (2) was synthesized, and was confirmed by gel permeation chromatography, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. In addition, in order to evaluate the influence of 4,4′-diphenylether moiety in the structure, epoxy resins having 4,4′-biphenylene moiety (4) and having 1,4-phenylene moiety (6) in place of 4,4′-diphenylether moiety were synthesized. The cured polymer obtained through the curing reaction between the new diphenylether-containing epoxy resin and phenol novolac was used for making a comparison of its thermal and physical properties with those obtained from 4, 6, and bisphenol-A (4,4′-isopropylidenediphenol) type epoxy resin. The cured polymer obtained from 2 showed markedly higher anaerobic char yield at 700°C of 44.0 wt %, higher fracture toughness, and higher mechanical strength and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3687–3693, 1999  相似文献   

12.
The colloid-chemical properties of aqueous dispersions of ED-20 epoxy-4,4′-isopropylidenediphenol resin, prepared by the method of phase inversion in the presence of various emulsifiers, were studied, and possible applications of these dispersions were outlined.  相似文献   

13.
A series of poly(4,4′‐biphenylenealkenylene)s and copolymers were prepared by the acyclic diene metathesis (ADMET) polymerization of 4,4′‐bis(alkenylene)1,1′‐biphenyls. Unsaturated polymers thus prepared were then hydrogenated to produce the corresponding saturated polymers. All the polymers were found to be thermotropic and to form solidlike smectic phases in melt. Their liquid crystallinity (LC) was studied by differential scanning calorimetry (DSC), X‐ray diffractometry, and polarizing microscopy. We observed that one of the phenylene units of the biphenyl structure could selectively be hydrogenated at an elevated temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1335–1349, 2004  相似文献   

14.
Random and block copolymers of poly (ether sulfone) (PES) and poly (ether ether sulfone) (PEES) were synthesized by the nucleophilic polycondensation of 4,4′‐dichlorodiphenyl sulfone (DCDPS) with 4,4′‐dihydroxydiphenyl sulfone (DHDPS) and hydroquinone (HQ). Chemical structures of these copolymers were characterized by 13C NMR. The monomer molar fraction, sequential distribution, and degree of randomness of the copolymers were determined through analyses of the resonances of quaternary carbons in the DCDPS unit. Experimental results show that the molar fractions of the comonomer determined by 13C NMR analyses are close to the charged values in the synthetic step. Moreover, these copolymers, which were prepared by different polymerization methods, revealed different number‐average sequential length and degree of randomness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1624–1630, 2005  相似文献   

15.
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002  相似文献   

16.
New sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003  相似文献   

17.
Novel semi-rigid fluorocarbon-containing coplycarbonates composed of biphenyl moiety and rigid rod-like hexafluoropentane chain were prepared by melt polycondensation of 6,6′-(biphenyl-4,4′-diyldioxy)dihexanol ( 1 ) and 2,2,3,3,4,4-hexafluoro-1,5-pentanediol ( 2 ) with alkylene diphenyl dicarbonates 3 of various aliphatic lengths (m = 6, 8, 10 and 12). The structures of the copolymers 4 were confirmed by FT-IR, 1H and 13C NMR spectra and elemental analyses. The thermal and liquid-crystalline (LC) properties were examined by differential scanning calorimetry (DSC), polarizing microscopy and temperature-changeable X-ray analyses. These measurements indicated that the copolymers show well-defined thermotropic nematic textures and have block-like sequences. It is suggested that the introduction of the hexafluoropentane chain into the main chain gives more stable LC phases.  相似文献   

18.
A novel synthetic method for the preparation of copolyesters comprised of diols and bisphenols using tosyl chloride (TsCl)/DMF/pyridine (Py) as a condensing agent has been developed. A variety of combinations of monomers could produce relatively high molecular weight copolymers, and better results were obtained by initial oligomerization of diols followed by bisphenols. In order to demonstrate usefulness of this method, copolymers comprised of IPA/TPA (50/50), bis(2‐hydroxyethyl)terephthalate (BHET),and several bisphenols were prepared and compared to the poly(ethylene terephthalate) (PET) modified by TPA and 2,2‐bis(4‐hydroxyphenyl)propane (BPA) diacetate in terms of their thermal properties. The length of mesogenic unit segments in the thermotropic IPA/TPA (50/50)‐BHET/ 4,4′‐dihydroxybenzophenone (4,4′‐DHBP) (50/50) copolymer was changed by initial reaction of BHET followed by dropwise addition of 4,4′‐DHBP in the two‐stage polycondensation and also by varying the amounts of BHET used at the initial and final stages in the three‐stage copolycondensation, and the results were studied by NMR and their thermal properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1270–1276, 2000  相似文献   

19.
The oxygen balance of oligomer homologs of epoxy-4,4′-isopropylidenediphenol oligomers and of polymeric materials based on them was calculated. The use of oligomeric fire retardants in epoxy solid fuel elements of aerosol-generating means for firefighting was substantiated. Heat-curable oligoether phosphates were suggested for fabricating solid fuel elements with increased content of the dispersed phase in the fire-extinguishing aerosol.  相似文献   

20.
Two bis(dimethylamimo)silanes with benzocyclobutene (BCB) groups, bis(dimethylamino)methyl(4′‐benzocyclobutenyl)silane ( 2 ) and bis(dimethylamino)methyl [2′‐(4′‐benzocyclobutenyl)vinyl]silane ( 4 ), were synthesized from different synthetic routes, which were then employed to prepare two novel silphenylene‐siloxane copolymers (SiBu and SiViBu) bearing latent reactive BCB groups by polycondensation procedure with 1,4‐bis(hydroxydimethylsilyl)benzene. At elevated temperatures these copolymers were readily converted to highly crosslinked films and molding disks with network structures by polymer chain crosslinking, which followed the first‐order kinetic reaction model. The final resins of SiBu and SiViBu demonstrated excellent thermal stability with high glass transition temperatures (218 and 256 °C) and high temperatures at 5% weight loss (553 and 526 °C in N2, 530 and 508 °C in air). After aging at 300 °C in air for 100 h, the cured resins showed weight loss lower than 4%. The films of cured SiBu and SiViBu also exhibited relatively low dielectric constants of 2.66 and 2.64, low dissipation factors of 2.23 and 2.12 × 10?3, low water absorptions (≤0.28%), and high transparence in the visible region with cutoff wavelengths of 321 and 314 nm. Moreover, the aged films exhibited good dielectric properties and low water absorptions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7868–7881, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号