首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

2.
Total Synthesis of Natural α-Tocopherol A short and efficient route to optically pure (+)-(3 R, 7 R)-trimethyldodecanol ( 14 ) is demonstrated, 14 serving as side chain unit in the preparation of natural vitamin E. The synthesis of 14 is based on the concept of using a single optically active C5-synthon of suitable configuration and functionalization to introduce both asymmetric centres in 14 . (?)-(S)-3-Methyl-γ-butyrolacton ( 1 ) and ethyl (?)-(S)-4-bromo-3-methylbutyrate ( 2 ), respectively, is used in a sequence of either two Grignard C,C-coupling reactions 5 → 8 and 12 → 13 or two Wittig reactions 17a → 18 and 20 → 21 to achieve this goal. 14 is converted to (2 R, 4′R, 8′R)-α-tocopherol (= vitamin E) by coupling with a chroman unit in known manner. Optical purity of products and intermediates is established.  相似文献   

3.
Chiral Building Blocks for Syntheses by Kolbe Electrolysis of Enantiomerically Pure β-Hydroxybutyric-Acid Derivatives. (R)- and (S)-Methyl-, and (R)-Trifluoromethyl-γ-butyrolactones, and -δ-valerolactones The coupling of chiral, non-racemic R* groups by Kolbe electrolysis of carboxylic acids R*COOH is used to prepare compounds with a 1.4- and 1.5-distance of the functional groups. The suitably protected β-hydroxycarboxylic acids (R)- or (S)-3-hydroxybutyric acid, (R)-4,4,4-trifluoro-3-hydroxybutyric acid (as acetates; see 1 – 6 ), and (S)-malic acid (as (2S,5S)-2-(tert-butyl)-5-oxo-1,3-dioxolan-4-acetic acid; see 7 ) are decarboxylatively dimerized or ‘codimerized’ with 2-methylpropanoic acid, with 4-(formylamino)butyric acid, and with monomethyl malonate and succinate. The products formed are derivatives of (R,R)-1,1,1,6,6,6-hexafluoro-2,5-hexanediol (see 8 ), of (R)-5,5,5-trifluoro-4-hydroxypentanoic acid (see 9,10 ), of (R)- and (S)-5-hydroxyhexanoic acid (see 11 ) and its trifluoro analogue (see 12, 13 ), of (S)-2-hydroxy- and (S,S)-2,5-dihydroxyadipic acid (see 23, 20 ), of (S)-2-hydroxy-4-methylpentanoic acid (‘OH-leucine’, see 21 ), and of (S)-2-hydroxy-6-aminohexanoic acid (‘OH-lysine’, see 22 ). Some of these products are further converted to CH3- or CF3-substituted γ- and δ-lactones of (R)- or (S)-configuration ( 14 , 16 – 19 ), or to an enantiomerically pure derivative of (R)-1-hydroxy-2-oxocyclopentane-1-carboxylic acid (see 24 ). Possible uses of these new chiral building blocks for the synthesis of natural products and their CF3 analogues (brefeldin, sulcatol, zearalenone) are discussed. The olfactory properties of (R)- and (S)-δ-caprolactone ( 18 ) are compared with those of (R)-6,6,6-trifluoro-δ-caprolactone ( 19 ).  相似文献   

4.
The title compounds were prepared starting from the dihydropyrrolones 4 – 6 . Nucleophilic displacement and ring closure yielded the 1H‐pyrrolo[3,2‐c]isothiazol‐5(4H)‐ones 8 and 10 . The fused systems formed salts with strong acids and electrophiles ( 15, 16 ), as well as with bases. Oxidation led either to S(2)‐oxides ( 18a, 20a ) or to the corresponding bicyclic sultams ( 18b, 20b ), depending on the reaction conditions. The sulfinamide 18a was also obtained from the known 1,2‐dithiolopyrrolone S‐oxide 21 by a ring‐opening/ring‐closure reaction sequence. O‐Methylation of 8 furnished the ‘azafulvene' 17 . The oxidative addition of [Pt(η2‐C2H4)L2] ( 24a : L=Ph3P, 24b : L=1/2 dppf, 24c : L=1/2 (R,R)‐diop) to 18a and 20a led to the cis‐amido‐sulfenato Pt complexes 25 and 26a – c , respectively.  相似文献   

5.
The homogeneous gas-phase decomposition kinetics of methylsilane and methylsilane-d3 have been investigated by the comparative-rate-single-pulse shock-tube technique at total pressures of 4700 torr in the 1125–1250 K temperature range. Three primary processes occur: CH3SiH3 → CH3SiH + H2 (1), CH3SiH3 → CH4 + SiH2 (2), and CH3SiH3 → CH2 = SiH2 + H2 (3). The high-pressure rate constants for the primary processes in CH3SiH3 obtained by RRKM calculations are log (k1 + k3) (s?1) = 15.2 - 64,780 Cal/θ and log k2 (s?) = 14.50 - 67,600 → 2800 Cal/θ. For CH3SiD3 these same rate constants are log k1 (s?) = 14.99 - 64,700 cal/θ log k2 (s?) = 14.68 – 66,700 → 2000 cal/θ, and log k3 (s?) = 14.3 ? 64,700 cal/θ.  相似文献   

6.
Substituted methylidenecyclopropanes 12a – d , being easily available from 1,1-dibromo-2-(phenylthio)-cyclopropane ( 9a ), are attractive precursors of triafulvene (2-methylidene-1-cyclopropene; 1 ). Both the sulfoxide 12b and the sulfone 12c react with an excess of alkoxides (t-BuOK and NaOMe) to give 12e and 12f , respectively, while the sulfinyl group of 12b may be replaced by the PhCH2S substituent in the presence of PhCH2SH/t-BuOK. These reactions (Scheme 4) may be explained by assuming 1 as a reactive intermediate, although an alternative sequence including carbene 20 (Scheme 6) is not completely ruled out. D -labelling experiments (Scheme 5) do not give conclusive evidence due to D scrambling, but deprotonation/methylation sequences show that H? C(2) of 12a – c is the most acidic proton. Final evidence for 1 results from the reaction of 12d with cyclopentadienide (Scheme 7): the reaction of 1 with cyclopentadiene produces the expected [4 + 2]-cycloaddition product 23 , while some mechanistic insight results from the sequence 12d → 24 → 25 .  相似文献   

7.
L -Aspartic acid by tosylation, anhydride formation, and reduction with NaBH4 was converted into (3S)-3-(tosylamino)butan-4-olide ( 8 ; Scheme 1). Tretment of 8 with ethanolic trimethylsilyl iodide gave the N-protected deoxy-iodo-β-homoserine ethyl ester 9 . The latter, on successive nucleophilic displacement with lithium dialkyl-cuprates ( → 10a–e ), alkaline hydrolysis ( → 11a–e ), and reductive removal of the tosyl group, produced the corresponding 4-substituted (3R)-3-aminobutanoic acids 12a–e (ee > 99%). Electrophilic hydroxylation of 8 ( → 19 ; Scheme 3), subsequent iodo-esterification ( → 21 ; Scheme 4), and nucleophilic alkylation and phenylation afforded, after saponification and deprotection, a series of 4-substituted (2S, 3R)-3-amino-2-hydroxybutanoic acids 24 including the N-terminal acids 24e ( = 3 ) and 24f ( = 4 ) of bestatin and microginin (de > 95%), respectively.  相似文献   

8.
A chiral economic synthesis of (R)- and (S)-muscone using the cyclofragmentation of epoxysulfones Starting with isobutyric acid (2) and using a microbiological oxidation with pseudomonas putida (S)-β-hydroxy-iso-butyric acid (3) has been prepared. From this /pseudosymmetrical: (see text) intermediate the two enantiomeric bromo derivatives 8 (R) and 20 (S) have been synthesized (cf. scheme 4) by altering the sequence of the reactions (cf. scheme 3). A Grignard reaction starting from the two bromo compounds 8 and 20 and from cyclododecanone 1 produced after hydrogenolysis the two enantiomeric dialcohols 9 and 21 (1 + 8 → 9, 1 + 20 → 21 , cf. scheme 5). The subsequent transformations led to the two enantiomeric olefin derivatives 12 and 24 . Oxidation of 12 with peracid produced a mixture of the two epoxy-sulfones 13 and 14 (cf. scheme 6). The olefin-derivative 24 was oxidized to the corresponding mixture of 25 and 26 . A one pot cyclofragmentation (cf. [4] and scheme 6) produced a mixture of (E)- and (Z)-3-methylcyclopentadec-4-en-1-one (13 + 14 → 15 + 16, 25 + 26 → 27 + 28) . The final hydrogenation led to natural (R)- and unnatural (S-muscone (3-methylcyclopentadecanone). The achiral starting material has been transformed to the desired optically active target products without loss of material with undesired absolute configuration. The authors used the notion of chiral economic synthesis to characterize synthetic sequences with the above mentioned features.  相似文献   

9.
4a-(Z-1-Propenyl)-bicyclo[4.4.0]dec-1(8a)-en-2-one ( 6 ) and 4a-(Z-1-propenyl)-bicyclo[4.4.0]deca-1(8a), 7-dien-2-one ( 17 ) undergo an intramolecular hydrogen transfer from the methyl group of the propenyl substitutent to the α-carbon atom of the enone group, and cyclization to the [4.4.3]propellane derivatives 9 and 30 , respectively, when excited in the π → π* wavelength region. The quantum yield for (Z)- 6 → 9 under optimum conditions is 0.29 at 254 nm. These reactions occur specifically from the S2 (π,π*) state, competing with the S2T decay. The triplet reactions of 6 are EZ double-bond isomerization, double-bond shift to (E,Z)- 8 , and rearrangement to (E)- 10 . Further investigations concern some structural limitations in the scope of the reaction type 6 → 9 and enone S2 reactivity in general.  相似文献   

10.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

11.
ABSTRACT

Ganglioside GM3 and KDN-ganglioside GM3, containing hexanoyl, decanoyl, and hexadecanoyl groups at the ceramide moiety have been synthesized. Selective reduction of the azido group in O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-(3-O-acetyl-2,6-di-O-benzoyl-β-D-glucopyranosyl)-(1→1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (1) and O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-O-(3-O-acetyl-2,6-di-O-benzoyl-β-D-glucopyranosyl)-(1→1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (2), coupling with hexanoic, decanoic, and hexadecanoic acids, O-deacylation, and de-esterification gave the title gangliosides GM3 (11→13) and KDN-GM3 (14→16) in good yields. On the other hand, O-deacylation of 1 and subsequent de-esterification gave 2-azido-sphingosine containing-GM3 analogue 17, which was converted into lyso-GM3, in which no fatty acyl group was substituted at the sphingosine residue, by selective reduction of the azido group.  相似文献   

12.
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1)) and corresponding glycosphingolipid (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/– ions, as well as for deprotonated (S4 + 4Btl)n– ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein–ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
Figure
?  相似文献   

13.
The [2.2.2]hericene ( 6 ), a bicyclo[2.2.2]octane bearing three exocyclic s-cis-butadiene units has been prepared in eight steps from coumalic acid and maleic anhydride. The hexaene 6 adds successively three mol-equiv. of strong dienophiles such as ethylenetetracarbonitrile (TCE) and dimethyl acetylenedicarboxylate (DMAD) giving the corresponding monoadducts 17 and 20 (k1), bis-adducts 18 and 21 (k2) and tris-adducts 19 and 22 (k3), respectively. The rate constant ratio k1/k2 is small as in the case of the cycloadditions of 2,3,5,6-tetramethylidene-bicyclo [2.2.2]octane ( 3 ) giving the corresponding monoadducts 23 and 27 (k1) and bis-adducts 25 and 29 (k2) with TCE and DMAD, respectively. Constrastingly, the rate constant ratio k2/k3 is relatively large as the rate constant ratio k1/k2 of the Diels-Alder additions for 5,6,7,8-tetramethylidenebicyclo [2.2.2]oct-2-ene ( 4 ) giving the corresponding monoadducts 24 and 28 (k1) and bis-adducts 26 and 30 (k2). The following second-order rate constants (toluene, 25°) and activation parameters were obtained for the TCE additions: 3 +TCE→ 23 : k1 = 0.591±0.012 mol?1·l·s?1, ΔH=10.6±0.4 kcal/mol, and ΔS = ?24.0±1.4 cal/mol·K (e.u.); 23 +TCE→ 25 : k2=0.034±0.0010 mol?1·l·s?1, ΔH = 10.6±0.6 kcal/mol, and ΔS = ?29.7±2.0 e.u.; 4 +TCE→ 26 : k1 = 0.172±0.035 mol?1·l·s?1, ΔH 11.3±0.8 kcal/mol, and ΔS = ?24.0±2.8 e.u.; 24 +TCE→ 26 : k2 = (6.1±0.2)·10?4 mol?1·l·s?1, ΔH = 13.0±0.3 kcal/mol, and ΔS = ?29.5±0.8 e.u.; 6 +TCE→ 17 : k1 = 0.136±0.002 mol?1·l·s?1, ΔH = 11.3±0.2 kcal/mol, and ΔS = ?24.5±0.8 e.u.; 17 +TCE→ 18 : k2 = 0.0156±0.0003 mol?1·l·s?1, ΔH = 10.9±0.5 kcal/mol, and ΔS = ?30.1 ± 1.5 e.u.; 18 +TCE→ 19 : k3=(5±0.2) · 10?5 mol?1 mol?1 ·l·s?1, ΔH = 15±3 kcal/mol, and ΔS = ?28 ± 8 e.u. The following rate constants were evaluated for the DMAD additions (CD2Cl2, 30°): 6 +DMAD→ 20 : k1 = (10±1)·10?4 mol?1 · l·s?1; 20 +DMAD→ 21 : k2 = (6.5±0.1) · 10?4 mol?1 ·l·?1; 21 +DMAD→ 22 : k3 = (1.0±0.1) · 10?4 mol?1 ·l·s?1. The reactions giving the barrelene derivatives 19, 22, 26 and 30 are slower than those leading to adducts that are not barrelenes. The former are estimated less exothermic than the latter. It is proposed that the Diels-Alder reactivity of exocyclic s-cis-butadienes grafted onto bicycle [2.2.1]heptanes and bicyclo [2.2.2]octanes that are modified by remote substitution of the bicyclic skeletons can be affected by changes inthe exothermicity of the cycloadditions, in agreement with the Dimroth and Bell-Evans-Polanyi principle. Force-field calculations (MMPI 1) of 3, 4, 6 and related exocyclic s-cis-butadienes as a moiety of bicyclo [2.2.2]octane suggested single minimum energy hypersurfaces for these systems (eclipsed conformations, planar dienes). Their flexibility decreases with the degree of unsaturation of the bicyclic skeleton. The effect of an endocyclic double bond is larger than that of an exocyclic diene moiety.  相似文献   

14.
When α,β-unsaturated γ-dimethoxymethyl cyclohexenones are excited to the S2(π,π*) state, certain unimolecular reactions can be observed to compete with S2 → S1 internal conversion. These reactions do not occur from the S1(n,π*) or the lowest T(π,π* and n,π*) states. They comprise the radical elimination of the formylacetal substituent (cf. 8 , 9 → 32 + 33 ), γ → α formylacetal migration (cf. 6 → 27 , 8 → 30 , 9 → 34 , 12 → 37 ), and a cyclization process involving the transfer of a methoxyl hydrogen to the α carbon and ring closure at the β position (cf. 6 → 28 , 8 → 31 , 12 → 38 , 20 → 40 + 41 ). The quantum yield of the ring closure 20a → 40a + 41a is 0.016 at ≤ 0.05M concentration. It is independent of the excitation wavelength within the π→π* absorption band (238–254 nm), but Φ ( 40a + 41a ) decreases at higher concentrations. According to the experimental data the reactive species of these specifically π→π*-induced transformations is placed energetically higher than the S1(n,π*) state, and it is either identical with the thermally equilibrated S2(n,π*) state, or reached via this latter state. The linear dienone 14 undergoes a similar π→π*-induced cyclization (→ 42 ) whereas the benzohomologue 26 proved unreactive, and the dienone 22 at both n → π and π→π* excitation only gives rise to rearrangements generally characteristic of cross-conjugated cyclohexadienones.  相似文献   

15.
Data on the kinetics of S2F10 pyrolysis, which gives SF4 + SF6, have been reinterpreted to give a value for the equilibrium constant of S2F10 ? SF4 + SF6. This, together with statistical estimates of the entropy and heat capacity of S2F10, can be used to give for this reaction values of ΔH = 19.7 ± 1.0 kcal/mole and ΔS = 47.6 ± 2 gibbs/mole. ΔH(S2F10) = –494 kcal/mole. A compatible mechanism is shown to be S2F10 ? 2SF5 (fast); 2SF5 ? SF6 + SF4 (slow) with step 2 rate-determining. The overall, best first order rate constant is proposed as kmeas = 1017.42–43.0/θ sec?1 = K1k2, where θ = 2.303RT in kcal/mole. Independent measurements of δH and S° for the SF5 radical, permits the evaluation of the equilibrium constant K1 = 108.92–(27.1 ± 6)/θ l./mole-sec and yields k2 = 108.50–15.9/θ l./mole-sec. The observed homogeneous catalysis by NO and CHCl ? CHCl can be explained in terms of a direct abstraction of F from S2F10 : C + S2F10 → CF + S2F9, followed by S2F9 → SF5 + SF4 and SF5 + CF ? SF6 + C (C ? NO or C2H2Cl2).  相似文献   

16.
An efficient approach to (2R,3S)-3-siloxy-2-phenylethynyl substituted pyrrolidines was developed through Y(OTf)3-CuI catalyzed N-α alkynylation of cyclic imines ( 1 a and 1 e) with alkynes 2 a – s . As a result, a number of trans-2-phenyl acetylene substituted-3-siloxy pyrrolidine derivatives 4 aa – as , 4 ea – ef and 4 es were synthesized in moderate to good yields with excellent diastereoselectivities (dr up to 99 : 1).  相似文献   

17.
Asymmetric Michael-Additions. Stereoselective Alkylation of Chiral, Non-racemic Enolates by Nitroolefins. Preparation of Enantiomerically Pure γ-Aminobutyric and Succinic Acid Derivatives Chiral, non-racemic lithium enolates ( E , F , G ) of 1,3-dioxolan-4-ones, methyl 1,3-oxazolidin-4-carboxylates, methyl 1,3-oxazolin-4-carboxylates, 1,3-oxazolidin-5-ones, and 1,3-imidazolidin-4-ones derived from (S)-lactic acid ( 2a ), (S)-mandelic acid ( 2b ), and (S)-malic acid ( 2c ), or from (S)-alanine ( 10 ), (S)-proline ( 11 ), (S)-serine ( 12 ), and (S)-threonine ( 13 ), are added to nitroolefins. Michael adducts ( 3 – 9 , 14 – 18 ) are formed (40–80%) with selectivities generally above 90% ds of one of the four possible stereoisomers. Conversions of these nitroalkylated products furnish the α-branched α-hydroxysuccinic acids 28 and 29 , the α-hydroxy-γ-amino acid 25 , the α,γ-di-amino acid 32 , the substituted γ-lactames 19 – 22 , and the pyrrolidine 23 . The relative and absolute configuration of the products from dioxolanones and nitropropene are derived by chemical correlation and NOE measurements indicating that the steric course of reaction is to be specified as 1k, ul-1,3. The mechanism is discussed.  相似文献   

18.
(5S,9S,17S)‐17‐Hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (II), and (5R,9R,17S)‐17‐hydroxy‐9(10→5)‐abeo‐estr‐4‐ene‐3,10‐dione, C18H26O3, (III), are equimolecular products of the FeII‐induced transposition of 10β‐hydro­peroxy‐17β‐hydroxyestr‐4‐en‐3‐one, (I). With respect to reagent mol­ecules, the configuration at C9 is retained for (II) while it is inverted in (III). The conformations of the five‐ and six‐membered rings are compared.  相似文献   

19.
The formation of the new optically active C3‐symmetrical receptors (S,S,S)‐ 2 – 4 (Fig. 1), incorporating 1,3,5‐triphenylbenzene and 1,3,5‐tris(phenylethynyl)benzene platforms as ‘floors' and ‘ceilings', is described. The tris(phenylethynyl)benzene derivatives 9 and (S,S,S)‐ 10 (Scheme 1) for the three‐fold peptide coupling to yield the macrocyclic skeletons (Scheme 2) were prepared starting from 1,3,5‐triethynylbenzene by the Sonogashira cross‐coupling reaction. The optical rotations of the three macrocycles (S,S,S)‐ 2 – 4 , two of which ((S,S,S)‐ 2 and (S,S,S)‐ 3 ) are constitutional isomers, differ significantly, which is explained by differential twists induced into the macrocyclic skeletons by the leucine spacer in these bridges. 1 : 1 Host–guest complexes of (S,S,S)‐ 2 – 4 with octyl glucosides (Fig. 3) in CDCl3 are of modest stability (Ka≤270 M ?1 at 300 K). In these complexes, the monosaccharides are most probably nesting on one of the H‐bonding faces of the receptor rather than being accommodated in the cavity.  相似文献   

20.
Colourless block‐shaped crystals of [(NH4)2(2.2.2‐cryptand)2][P2S8] ( 1 ) and [(NH4)2(18‐crown‐6)2][P2S8]·H2O ( 2 ) could be obtained by the reaction of an aqueous solution of ammonium hexathiohypodiphosphate, (NH4)4P2S6·2 H2O, with sulfur and 2.2.2‐cryptand or 18‐crown‐6. The crystal structures of both compounds have been determined by single‐crystal X‐Ray diffraction analysis. Compound 1 crystallizes in the monoclinic space group C2/c with a = 2032.7(2), b = 1243.6(2), c = 2244.6(2) pm, β = 98.64(1)°, and Z = 8, whereas compound 2 crystallizes also monoclinic in the space group P21/c with a = 2121.3(2), b = 865.5(1), c = 2345.4(2) pm, β = 91.96(1)°, and Z = 4. It could be established that the title compounds contain a new type of six‐membered [1,2‐P2S4] ring with P – P bond and three S – S linkages. The tetrahedral environment of each phosphorus is completed by a (formally) single and double bonded sulfur atom attached externally to the [1,2‐P2S4] ring. These terminal PS2 units are mesomerically stabilized according to their P – S distances. FT‐IR and FT‐Raman spectra of the title compounds are recorded and interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号