首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Exchange of Metal Ions in the System Acetylacetonate/Halide/Tetrahydrofuran . As bifunctional Lewis bases metal bis(acetyl-acetonates) react with zinc(II) chloride under formation of binuclear complexes (THF)2M(acac)2ZnCl2 (M = Ni, Co, Mg). The octahedral and the tetrahedral centre of these compounds are connected by tridentate oxygen atoms of the two acetylacetonato ligands which are simultaneously part of a four-membered ring MOZnO. The addition is combined with a deformation of the octahedral centre, as a prerequisite of a closest package of the atoms within the MOZnO ring. With mercury(II) chloride the metal bis(acetylacetonates) react as tetrafunctional Lewis bases. In the trinuclear complexes (THF)2M(acac)2(HgCl2)2 (M = Co, Ni, Mg) the interaction between the three coordination centres is weak. No structural change of the octahedral centre (THF)2M(acac)2 is found, but the HgCl2 group diverge slightly from linearity. A ligand exchange was observed in the following cases:
  • (a) Reaction of vanadium(III) chloride with Co(acac)2 under formation of [(THF)2V(acac)2][(THF)CoCl3] (transition of the acetylacetonato ligands to the higher valent central atom).
  • (b) Reaction of magnesium halides with M(acac)2 and formation of (THF)3Mg(acac)2MX2
  • (c) Formation von (THF)3Co(acac)(μ—C1)ZnC12 (V) by the reaction of Zn(acac)2 with cobalt(l1) chloride
In the complex V the octahedral ccntrc of cobalt(II) is connected with the tetrahedral centre of zinc(I1) by tridentate oxygen atom of the acetylacetonato ligand and a chloro bridge (formation of the four-membered CoClZnO cycle with a closest package of the atoms). A driving force for reaction c is the formation of the stable tetrahedral OZnCI3 group. Important for the li- gand exchange according to c is the stability of the octa- hcdral MgO6 moiety and the easy formation of the tetra- hedral MO2X2 group with a transition metal ion. (THF)3Co(acac)(μ-CI)(HgCl2) (VI) is isoslruclural with V. But there is a marked diffcrence between the bond angles of the tetrahedral central atom including the termi- nal chloro ligands (120.7° for V; 143.7° for VI). The crystal structure of (THF)3Co(acac)(μ-CI)ZnCl2 (V) was determined by X-ray diffraction: monoclinic; space group P2,/n; Z = 4; a = 1 177.4(5); b = 1628.9(4); c = 1284.2(6) pm; β = 99.54(4)°; R = 6.71 % for 2160 observed reflections.  相似文献   

2.
Structure and Thermal Degradation of Bis(1,3-diketonato)cobaltbisimidazoles The crystal structure of Co(bzac)2(HIm)2. 2MeOH ( I ) and Co(acac)2(HIm)2 ( II ) were determined by x-ray diffraction. II : triclinic, space group P1 , Z = 2, a = 746.3(1), b = 948.2(1), c = 1396.7(2)pm, α = 85.18(1)°, β = 88.96(1)°, γ = 80.72(1)°, R = 3.0% for a total of 2194 observed reflections. I : monoclinic, P21/c, Z = 2, a = 964.2(3), b = 864.5(2), c = 1769.8(4)pm, β = 98.87(2)°, R = 4.7% for a total of 967 observed reflections. In both compounds centrosymmetric molecules with two bidentate diketonato groups and two imidazole ligands in trans-position are present. The molecules of II are linked by N? H…?O-bridges within layers, while in the lattice of I by the interaction with methanol molecules N-H…?O-H…?O-bridges are formed. The nature of the H-bridges is the deciding factor for the first step of the thermal degradation of the complexes. The N-H…?O-bridges of II relieves the change of the acidic protons of the imidazole to the acetylacetonato ligands. Therefore in the first step acetylacetone is eliminated. No such bridges are present in the complex I . Therefore, in the first step, imidazole and methanol are removed. On heating in O-donor solvents the reaction of I is quite analogous, and this is the reason for the application of this complex as a latent initiator of the epoxide polymerisation.  相似文献   

3.
Polysulfonyl Amines. LXIX. Novel Pnictogen Disulfonylamides: Synthesis of Bismuth Dimesylamides and Crystal Structures of the Twelve-Membered Cyclodimer [Ph2BiN(SO2Me)2]2 and of the Ionic Complex [H(OAsPh3)2](MeSO2)2N? The novel bismuth(III or V) disulfonylamides Ph2BiN(SO2Me)2 ( 1 ), PhBi[N(SO2Me)2]2 ( 2 ), PhBi[N(SO2Me)2]Br ( 3 ), Bi[N(SO2Me)2]2Cl ( 4 ), Bi[N(SO2Me)2]Cl2 · 12-crown-4 ( 5 ) and Ph3Bi[N(SO2Me)2]Cl ( 6 ) were obtained by acidolysis of Ph3Bi with HN(SO2Me)2 (→ 1 ), by metathesis of AgN(SO2Me)2 with Ph2BiCl (→ 1 ) or PhBiBr2 (→ 2, 3 ), by condensation of BiCl3 with Me3SiN(SO2Me)2 (→ 4 ; in presence of 12-crown-4: → 5 ), or by oxidative addition of ClN(SO2Me)2 to Ph3Bi (→ 6 ). Independently of the molar ratio employed, triphenylarsane oxide and dimesylamine form the crystalline 2/1 complex [H(OAsPh3)2](MeSO2)2N? ( 7 ). The crystal packing of 7 (monoclinic, space group C2/c) consists of discrete cations displaying crystallographic Ci symmetry and a strong O …? H …? O hydrogen bond (H atom located on a centre of symmetry, O …? O′ 241.2 pm, As? O …? O′ 120°, As? O 168.3 pm), and chiral anions with crystallographic C2 symmetry (N? S 157.3 pm, S? N? S 122,9°). In the solid state, the bismuth(III) compound 1 (triclinic, space group P1 ) is a cyclodimer with crystallographic Ci symmetry, in which two Ph2Bi cations are connected through two (α-O, ω-O)-donating dimesylamide ligands to form a roughly twelve-membered [BiOSNSO]2 ring (Bi? O 239.7 and 246.6, O? S 148.0 and 145.4, S? N 157.7 and 159.2 pm, Bi? O? S 126.6 and 127.5°). The bismuth atom adopts a pseudo-trigonal-bipyramidal geometry (O? Bi? O 165.4, C? Bi? C 93.0, O? Bi? C 83.8 to 86.5°). The essentially similar conformations of the discrete anion in 7 and of the bidentate bridging ligand in 1 are discussed in detail.  相似文献   

4.
Synthesis and Structure of Cobalt(III) Complexes of 14-Membered cis- and trans-N2S2 Dibenzo Macrocycles with two Pendant Acetato Groups The isomeric fourteen membered macrocyclic ligands 6,7,9,15,16,18-hexahydrodibenzo[f,m][1,8]dithia[4,11]diazacyclotetradecine-8,17-diacetic acid-0.5-hydrate (H2L3), C22H26N2O4S2 · 0.5 H2O and 6,7,13,15,16,18-hexahydrodibenzo-[e,m][1,4]dithia[8,11]diazacyclotetradecine-14,17-diacetic acid-1.5-hydrate (H2L6), C22H26N2O4S2 · 1.5 H2O with cis- and trans-N2S2 donorsets and two pendant acetato groups form the stable complexes [Co(L3)]ClO4 · 2 H2O ( 1 ) and [Co(L6)]ClO4 · H2O ( 2 ). Co(III) is octahedrally coordinated herein to all six donor centers of the respective ligand. The macrocyclic rings are folded. The metal ions are located outside the macrocyclic cavity. The mean Co? N, Co? O and Co? S distances are 196, 190 and 224 pm, respectively. Crystal data: 1 , monoclinic, space group C2/c, a = 3 797.7(9), b = 763.8(3), c = 2 207.0(7) pm, β = 123.17(2), Z = 8, 3 445 reflections, R(Rw) = 0.072(0.070); 2 , monoclinic, space group C2/c, a = 3 197.1(6), b = 880.4(2), c = 1 890.6(4) pm, β = 112,19(3)°, Z = 8, 4 415 reflections, R(Rw) = 0.062(0.064).  相似文献   

5.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

6.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

7.
The electron transfer kinetics of the reaction between the surfactant-cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+, cis-α-[Co(trien)(C12H25NH2)2]3+(en:ethylenediamine, trien:triethylenetetramine, C12H25NH2 : dodecylamine) by iron(II) in aqueous solution was studied at 298, 303, 308 K by spectrophotometry method under pseudo-first-order conditions using an excess of the reductant in self-micelles formed by the oxidant, cobalt(III) complex molecules, themselves. The rate constant of the electron transfer reaction depends on the initial concentration of the surfactant cobalt(III) complexes. ΔS# also varies with initial concentration of the surfactant cobalt(III) complexes. By assuming outer-sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of the self-micelles formed by the surfactant cobalt(III) complexes in the reaction medium. The rate constant of each complex increases with initial concentration of one of the reactants surfactant-cobalt(III) complex, which shows that self micelles formed by surfactant-cobalt(III) complex itself has much influence on these reactions. The electron transfer reaction of the surfactant-cobalt(III) complexes was also carried out in a medium of various concentrations of β-cyclodextrin. β-cyclodextrin retarded the rate of the reaction.  相似文献   

8.
Two new mononuclear cobalt(II) complexes [Co(ntb)(pic)](ClO4) · (CH3OH)2.35 (1) and [Co(ntb)(nic)](ClO4) · CH3OH (2) were synthesized and structurally characterized, where ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid, and nic is the anion of nicotinic acid. The X-ray analysis indicates that the Co(II) center is six-coordinate in distorted octahedral and five-coordinate in distorted trigonal bipyramidal geometry for 1 and 2, respectively. In 1, the picolinate anion coordinates to Co(II) in a bidentate μ2-N,O chelating mode. In 2, the nicotinate anion coordinates with Co(II) through a monodentate carboxylate oxygen. 1-D chain structures were formed by intermolecular hydrogen bonds in the two complexes and π–π interactions are important for the stabilization of the structures.  相似文献   

9.
A series of 2-aminosubstituted (5Z)-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-ones (L) was prepared by the reaction of the corresponding 2-alkylthio-3,5-dihydro-4H-imidazole-4-ones with morpholine or piperidine in the presence of ytterbium(III) triflate. The resulting ligands were subsequently reacted with CuCl2·2H2O and CoCl2·6H2O to give the corresponding copper(II) and cobalt(II) complexes, respectively. Analysis revealed that the complexes were formed with an LMCl2 (M = Cu, Co)-type composition in all cases. The structures of the three cobalt complexes prepared in this way were determined by X-ray crystallography. The results revealed that the cobalt ions in these complexes were tetrahedrally coordinated to two chloride anions and two nitrogen atoms from the pyridine and imidazole moieties of the ligand. The electrochemical properties of the ligands and their complexes were evaluated by cyclic voltammetry, and the results revealed that the first stage in the reduction of the Co(II) and Cu(II) complexes involved the reversible formation of the corresponding Co(I) and Cu(I) complexes, respectively. The cytotoxicity activities of the organic ligands and their complexes were evaluated against several cancer cell lines, including MCF-7, A549 and HEK293 cells. The copper complexes of the organic ligands bearing a phenyl or allyl moiety at their N(3) position together with a piperidine substituent at the 2-position of their imidazolone ring exhibited the greatest cytotoxicity of all of the compounds tested in the current study.  相似文献   

10.
Two new complexes of imidazole alcohols, 4-hydroxymethylimidazole (4-CH2OHim) and 4-hydroxymethyl-5-methylimidazole (4-CH2OH-5-CH3im), with cobalt(II) of formula [CoL2(H2O)2](NO3)2 were obtained. These compounds were described through single X-ray diffraction studies, spectroscopic (Ir. Far-IR, UV-Vis-NIR) and magnetic measurements. In the present complexes imidazole ligands are bidentate coordinating the heterocyclic ring through pyridine-like nitrogen and the oxygen atom of the hydroxymethyl group (chromophore CoN2O4). The shape of Co(II) coordination polyhedra is that of a distorted octahedron, with the equatorial plane defined by the 4-CH2OHim (or 4-CH2OH-5-CH3im) bidentate ligands and two water molecules occupying axial positions (i.e. trans to each other). Formation of successive cobalt(II) complexes with 4-CH2OH-5-CH3im in aqueous solution was followed quantitatively by potentiometry.  相似文献   

11.
The mononuclear cobalt(III) complex [Co(L)2]Cl ·?H2O (1) (where L is H2N(CH2)2N=CC6H3(OMe)(O?)) has been prepared and characterized by IR, UV-Vis spectroscopy, conductivity measurements, elemental analysis, TGA, cyclic voltammetry and an X-ray structure determination. The cobalt(III) coordination sphere in [Co(L)2] is cis-CoN4O2 with the NNO ligands. Electrochemical studies of 1 using cyclic voltammetry indicate an irreversible cathodic peak (E pc, ca ?0.60 V) corresponding to reduction of cobalt(III) to cobalt(II).  相似文献   

12.
Addition of Transition Metal Dihalides to Acetylacetonates of Divalent Metal Ions Transition metal dihalides aMIIX2 (FeCl2, CoCl2 NiBr2 etc.) are added by the chelates MII(acac)2 under formation of binuclear complexes (THF)2MII(acac)2(aMIIX2). The octahedral and the tetrahedral centre of these compounds are connected by tridentate oxygen atoms of the two acetylacetonato ligands which are simultaneously included in four-membered rings (MIIOMII). The addition is combined with a deformation of the octahedral centre, as a prerequisite of a closest package of the atoms within the MIIOMII-ring. In the trinuclear complex (THF)2Ni(acac)2(HgCl2)2 III the interaction between the three coordination centres is weak. No structural change of the octahedral centre (THF)2Ni(acac)2 is found, but the HgCl2-groups diverge slightly from linearity (Cl? Hg? Cl 171.1°). No binuclear complexes with a central ion of the oxidation state III in the octahedral centre were obtained. One reason is the lowered donor strength of the bidentate Lewis base function of the octahedral centre [(THF)2Mn+(acac)2]n-2 with M+3 as a centralatom. Reacting systems with di- and trivalent ions prefer ionic complexes, as it is shown by the formation of [(THF)2V(acac)2][(THF)CoCl3] IV from VCl3 and Co(acac)2. The crystal structures of (THF)2Co(acac)2CoCl2 II and [(THF)2V(acac)2][(THF)CoCl3] IV were determined by x-ray diffraction. II : orthorhombic-primitive; space group P212121, Z = 4; a = 967.4(2), b = 1453.4(3), c = 1715.9(4) pm; R = 0.049 for 3084 observed reflections. IV : triclinic; space group P1, Nr. 2; Z = 2; a = 871,5(2), b = 930,6(3), c = 1865,6(6) pm; α = 101,70(2), b? = 92,45(2), γ = 91,06(2)°; R = 0,060 für 4221 observed reflections.  相似文献   

13.
2-Dimethylaminoethanol (dmea) reacted with tetraaqua-bis(saccharinato)cobalt(II) and -zinc(II) in n-butanol to yield the new complexes cis-[Co(sac)2(dmea)2] (1), and cis-[Zn(sac)2(dmea)2] (2) (sac?=?saccharinate). The complexes were characterized by elemental analyses, IR spectroscopy, DTA-TG and X-ray crystallography. Both complexes are isomorphous and crystallize in the monoclinic space group P21/c. The cobalt(II) and zinc(II) ions are coordinated by two neutral dmea ligands and two sac anions in a distorted octahedral environment. The dmea ligand acts as a bidentate N, O donor through the amine N and hydroxyl O atoms, while the sac ligand exhibits non-equivalent coordination, behaving as an ambidentate ligand; one coordinates to the metal via the carbonyl oxygen atom, while the other is N-bonded. The packing of the molecules in the crystals of both complexes is achieved by aromatic π(sac)–π(sac) stacking interactions, C–H?·?π interactions and weak intermolecular C–H?·?O hydrogen bonds involving the methyl groups of dmea and the sulfonyl oxygen atoms of the sac ligands. IR and UV spectra and thermal analysis are in agreement with the crystal structures.  相似文献   

14.
Polysulfonyl Amines. XLI. A Silver(I) Hydrate with an Unusual Composition: Characterization of Tetrakis(dimesylamido)aquatetrasilver(I) [Ag4(N)SO2CH3)2}4(H2O)] by X-Ray Diffraction and Thermal Analysis The title compound is obtained by crystallizing AgN(SO2CH3)2 from water at room temperature. Crystallographic data (at ?95°C): Triclinic space group P1 , a = 864.6(4), b = 1 211.2(5), c = 1 399.1(5) pm, α = 90.97(3), β = 90.90(3), γ = 98.25(4)°, V = 1.4496 nm3, Z = 2, Dx = 2.608 Mg m?3. The four independent silver atoms and the water molecule form zigzag chains Ag(1)-Ag(2)-(μ-H2O)-Ag(3) …? Ag(4) …? Ag(1′) with distances Ag(1)-Ag(2) 309.7, Ag(2)-O(w) 241.8, O(w)-Ag(3) 241.4, Ag(3) …? Ag(4) 342.9, Ag(4) …? Ag(1′) 361.4 pm. The catenated silver atoms are further connected by the dimesylamide anions acting as tridentate bridging (α-O, N, ω-O)-ligands. The resulting strands are interconnected into layers through one O(S)-Ag′ contact (247 pm) and one hydrogen bond O(w)-H(l) …? O′(S) per repeating unit. Between the layers, a weak O(S) …? Ag″ interaction (271 ptn) and a hydrogen bond O(w)-H(2) …? O(S) per repeating unit are observed. The silver atoms Ag(l) to Ag(4) display the coordination numbers 5 [NO,Ag(2), distorted trigonal bipyramid], 5[NO2,O(w)Ag(I), distorted trigonal bipyramid], 5[O4,O(w), trigonal bipyramid], and 2 + 1 (N2, li-near; plus a secondary Ag …? 0 contact). The dehydration of the title compound and a solid-solid phase transformation in anhydrous AgN(SO2CH3)2, were quantitatively investigated by thermoconductometry and time- and temperature-resolved X-ray diffractometry (TXRD).  相似文献   

15.
The compounds of 2-(5-chloro/nitro-1H-benzimidazol-2-yl)-4-bromo/nitrophenols (HLX : X = 1–4) and their copper(II) nitrate and iron(III) nitrate complexes have been synthesized and characterized. The structures of the complexes were confirmed on the basis of elemental analysis, thermal gravimetric analysis, molar conductivity and magnetic moment measurements, FT-IR, mass, and UV-Vis spectroscopy techniques. The complexes show high-thermal stability with >350°C m.p. In all complexes, the ligands are bidentate via one imine nitrogen and a phenolate oxygen. Cu(II) complexes having 1 : 2 M : L ratio are classified as non-electrolytes, whereas 1 : 1 M : L ratio is observed in Fe(III) complexes except [Fe(L3)2(H2O)2](NO3) ? 3H2O. The antimicrobial activities of the ligands and the complexes were evaluated using the disc diffusion method in DMSO as well as minimum inhibitory concentration dilution method against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis. Antifungal activities were reported for Candida albicans. The complexes [Fe(L3)2(H2O)2](NO3) ? 3H2O and [Cu(L3)2] ? 2H2O are more effective against S. epidermidis than ciprofloxacin.  相似文献   

16.
The electrochemical behavior of a complex of cobalt with dimethylglyoxime Co(DMG)2(H2O)2 is studied by cyclic voltametry. Peaks corresponding to redox transitions Co(III)/Co(II) and Co(II)/Co(I) are observed in the potential region 0.4 to ?1.8 V (Ag/AgCl). The product of reduction of the initial complex interacts with carbon dioxide to form a stable compound, probably an intermediate product of electrocatalytic reduction of CO2 to CO in the presence of N4-macrocyclic complexes of cobalt.  相似文献   

17.
A reverse-phase chromatographic method is described for the simultaneous determination of Co(II) and Co(III) using gradient elution of the Co(DEDTC)3 and Co(acac)3 complexes, respectively, with phosphate buffered acetonitrile water mixtures. The separated Co species are detected spectrophotometrically at 322?nm. The analytical range of the method is 0.1 to 1.25?μg/ml for Co(II) and 0.1 to 1.5?μg/ml for Co(III).  相似文献   

18.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:16,17-tribenzo-9,12,15-trioxacyclooktadeca-1,5-dien (L) was synthesized by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by template effect by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

19.
Polysulfonylamines. LXXXIV. Isotypic Structures in the Dimesylamide Complex Series [M(H2O)4{(CH3SO2)2N}2] (M?Mg, Ca, Ni, Cu, Zn, Cd) and [M(py)4{(CH3SO2)2N}2] (M?Ni, Cu, Zn, Cd) The crystal structures of the trans-octahedral complexes [M(H2O)4{(CH3SO2)2N}2] (M?Ca, Cd), in which the dimesylamide anion acts as a monodentate O-ligand and a tetrafunctional hydrogen bond acceptor, were determined by low-temperature X-ray diffraction. Both belong to an isotypic series (triclinic, space group P1 , Z = 1) that had previously been characterized for M?Mg, Ni, Cu and Zn (Z. Anorg. Allg. Chem. 1996 , 622, 1065). In this structure there exists an extended network of strong hydrogen bonds which is probably the underlying reason why the structure type surprisingly persists across the whole series. To support this explanation by indirect evidence from comparison with suitable structures devoid of strong hydrogen bonding, the analogous trans-octahedral complexes [M(py)4{(CH3SO2)2N}2] (M?Mn, Co, Ni, Cu, Zn, Cd) were prepared by treating M[(CH3SO2)2N]2 with pyridine, and the crystal structures of the Ni, Cu, Zn and Cd compounds were studied by low-temperature X-ray crystallography. As anticipated, the four pyridine complexes do not form an isotypic series but instead two isotypic pairs consisting of the Ni and Zn compounds (monoclinic, space group P21/n, Z =2) and of the Cu and Cd complexes (triclinic, space group P1, Z = 1). All molecules of the aqua and the pyridine complexes display crystallographic centrosymmetry. In the hydrates, the mean M? OH2 and the M? O(anion) distances are 232.6 and 232.7 pm for M ? Ca, 225.5 and 230.3 pm für M ? Cd. The mean M? N and the M? O(anion) bond lengths of the pyridine species amount to 211.8 and 213.1 pm for M ? Ni, 217.0 and 218.5 pm for M ? Zn, 232.8 and 234.4 pm for M ? Cd; the corresponding values for the severely Jahn-Teller distorted Cu complex are 203.6 and 254.5 pm. In the crystals of the pyridine complexes, each methyl group is connected through a weak C? H…?O bond to a sulfonyl oxygen atom of an adjacent molecule.  相似文献   

20.
abstract

The present work reports on stoichiometry, apparent stability constants of biologically relevant complexes of nickel(II), cobalt(III) with hydrazones derived from pyridoxal 5′-phosphate and hydrazides of 2-,3-,4-pyridinecarboxylic acids at pH 7.4, T?=?25.0?°C, I?=?0.25 determined using UV-Vis spectroscopy. The thermodynamic constants of some complexes formation (NiL, NiL2, NiL2H) were estimated. Cobalt(II) ion was found to be oxidized to cobalt(III). Co(II) and Co(III) form low-spin state complexes. Hydrazones binding ability (pL0.5) in the medium mimicking biological ones towards Ni(II) and Co(III) was estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号