首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative free energy difference (ΔΔGhyd) for the reversible addition of water to two unsaturated molecules is accurately computed using a combination of ab initio quantum mechanical calculations and free energy perturbation methods. Initial attempts to calculate the absolute hydration free energy difference (ΔGhyd) for formaldehyde and trichloroacetaldehyde gave values that differed substantially from experimental results even after inclusion of electron correlation energy contributions using third-order (MP3) and fourth-order (MP4) Møller-Plesset perturbation theory and QCISD(T) correlation methods at the 6-31G** basis set level. Inaccuracies in ΔGhyd were attributed to errors in the calculation of both ΔGgas and ΔΔGsol. Gas phase quantum mechanical free energies (ΔGgas) varied significantly (2–3 kcal/mol) depending on the level of theory. Errors in ΔΔGsol were attributed to slow convergence of the calculations using the thermodynamic cycle perturbation (TCP) method with explicit solvent. These errors were minimized or canceled, however, when relative hydration free energy differences (ΔΔGhyd) were calculated using a combination of ab initio quantum mechanical calculations and free energy perturbation methods. Calculated values for a variety of aldehydes and ketones were consistent with experimental data. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The interaction between coniferyl alcohol (CA) and laccase (LAC) was investigated using molecular dynamics (MD) simulations and spectral experiments. The mode of interaction between CA and LAC was established by MD simulations. The micro-environmental changes, stability and rigidity of the LAC-CA system were assessed by relevant parameters. These parameters include root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radius of gyration (Rg). The calculated binding free energy (ΔGbinding=??19.99?kcal·mol.?1), the van der waals (VDW) contribution (ΔGvdw=?23.99?kcal·mol?1) and the electrostatic energy (ΔGele=?23.09?kcal·mol?1) of LAC-CA system demonstrated that the interaction of LAC-CA was a spontaneous process and the main interaction forces were van der Waal's and electrostatic forces. The values of ΔGvdw and ΔGele were negative, which demonstrated that VDW interactions and electrostatic interactions were favorable for the binding of CA and LAC. The binding constants, thermodynamic parameters, molecular force types and binding distances confirmed the interaction between CA and LAC and further verified the rationality of the theoretical model by spectral experiments. The MD simulations and experimental approaches provide clues for the discovery of new mediators and useful references for the mechanism of microbial degradation of lignin and industrialization of lignocellulose.  相似文献   

3.
The kinetics of SN2 reaction between phenacyl bromide and various amines in 12 different solvents were studied. Solvent effects on the rate of this reaction and free energy of activation, ΔG# , were interpreted by applying the Abraham-Kam-let-Taft (AKT) equation. UK solvent polarity (π1*), solvent hydrogen-bond basicity (β1) and Hildebrand cohesive density energy (δH2) are those parameters which increase the rate constant and decrease ΔG# , while solvent hydrogen-bond acidity (α1) will have the compensatory effect. A comparison among obtained values of second rate constants, k2, for different amines in a given solvent indicates that the amine reactivities are highly dependent on their structures. The consequent decrease of the rate constant for different amines in any given solvent was found to be: primary > secondary> tertiary. This order results from steric effects of amines.  相似文献   

4.
An ab initio study of methylenediamine and several methylated derivatives in the gas phase and aqueous solution was performed. The conformational preferences can be considered adequately described at the HF/6‐31G**//HF/6‐31G** level, because these results agree with those obtained using larger basis sets and including ZPE and electron correlation. The energy ordering is clearly dependent on the number and position of the methyl groups present in a molecule. For a first set of the compounds, the energies obtained were interpreted in terms of the anomeric effect because the favored conformers show two or one anti orientation between the nitrogen lone pair and the C N polar bond. Reverse anomeric effects were found for a second set of compounds. The NBO analysis was used to interpret these energetic tendencies and the rotational barrier around the N C bonds. Thus, the preference for the anti‐Lp N C N orientations is mainly due to charge delocalization, always stronger than the electrostatic and steric contributions included in the Lewis term. However, the origin for the reverse anomeric effect may be related to the steric hindrance associated with the methylation. The influence of water on the conformational preferences was evaluated by means of the PCM method. Contrary to expectation, the anomeric effect is not reduced in water, and the most stable conformers in the gas phase are maintained in solution. The electrostatic term of the free solvation energy is the main responsible of the energetic changes, and depends strongly on local solute–solvent interactions. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 135–150, 2001  相似文献   

5.
Kinetic study of hydroxide anion catalyzed hydrolysis of ethyl acrylate has been carried in ethanol-water (10–50% v/v) binary systems at the temperature range 30 ± 0.1, 35 ± 0.1, 40 ± 0.1, and 45 ± 0.1°C. Calculated specific rate constant values decreases with increasing proportion of ethanol at all temperatures. The observed retardation of a base catalyzed hydrolysis reaction is explained on the basis of fact that the formation of polarized transition state is disfavored with increase in % of ethanol. The relation between the change in dielectric constant due to variation in binary mixtures and change in specific rate constant are explained on the basis of electrostatic and non electrostatic contributions of solvent mixtures. The variation of ΔG*, ΔH*, ΔS* with solvent composition and the specific effect of water on the reaction rate kinetics are also discussed.  相似文献   

6.
Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H (ppd)AN-MeOH values obtained using the literature data on Δsol H (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.  相似文献   

7.
Dissociation constants (pKa) of trazodone hydrochloride (TZD⋅HCl) in EtOH/H2O media containing 0, 10, 20, 30, 40, 50, 60, 70, and 80% (v/v) EtOH at 288.15, 298.15, 308.15, and 318.15 K were determined by potentiometric techniques. At any temperature, pKa decreased as the solvent was enriched with EtOH. The dissociation and transfer thermodynamic parameters were calculated, and the results showed that a non‐spontaneous free‐energy change (ΔdissGo>0) and unfavorable enthalpy (ΔdissHo>0) and entropy (ΔdissSo<0) changes occurred on dissociation of trazodone hydrochloride. The free‐energy change or pKa varied nonlinearly with the reciprocal dielectric constant, indicating the inadequacy of the electrostatic approach. The dissociation equilibria are discussed on the basis of the standard thermodynamics of transfer, solvent basicity, and solute‐solvent interactions. The values of ΔtransGo and ΔtransHo increased negatively with increasing EtOH content, revealing a favorable transfer of trazodone hydrochloride from H2O to EtOH/H2O mixtures and preferential solvation of H+ and trazodone (TZD). Also, ΔtransSo values were negative and reached a minimum, in the H2O‐rich zone that has frequently been related to the initial promotion and subsequent collapse of the lattice structure of water. The pKa or ΔdissGo values correlated well with the Dimroth‐Reichardt polarity parameter ET(30), indicating that the physicochemical properties of the solute in binary H2O/organic solvent mixtures are better correlated with a microscopic parameter than the macroscopic one. Also, it is suggested that preferential solvation plays a significant role in influencing the solvent dependence of dissociation of trazodone hydrochloride. The solute‐solvent interactions were clarified on the basis of the linear free‐energy relationships of Kamlet and Taft. The best multiparametric fit to the Kamlet‐Taft equation was evaluated for each thermodynamic parameter. Therefore, these parameters in any EtOH/H2O mixture up to 80% were accurately derived by means of the obtained equations.  相似文献   

8.
Using dynamic method and the laser monitoring observation technique, the solubility of cefodizime disodium in water + (ethanol, 1-propanol, and 2-propanol) was measured as a function of temperature from 278.15 K to 318.15 K under atmospheric pressure. The experimental data were correlated with a simple model of molecular thermodynamics for solubility of solid in liquid. The model parameters were fitted, and the solution enthalpies ΔsolH and solution entropies ΔsolS were estimated. ΔsolH and ΔsolS are all positive. The endothermic effect of solution process may be due to the fact that the newly bond energy between cefodizime disodium and solvent molecules is not powerful enough to compensate the energy needed to break the original association bond in various solvents, and the system needs to absorb heat from surroundings and manifests as ΔsolH > 0. The reason for the entropy increase during the dissolution process is that the solutes disrupt the alignment of solvent molecules and therefore reduced the degree of order of the system while they were dissolved in various solvents. The positive ΔsolH and ΔsolS revealed that the dissolution process of cefodizime disodium was an entropy-driven process.  相似文献   

9.
Saturation molalities m(sat) in H2O(l) have been measured for the substances cytidine(cr), hypoxanthine(cr), thymidine(cr), thymine(cr), uridine(cr), and xanthine(cr) by using h.p.l.c. The states of hydration were established by performing Karl-Fischer analyses on samples of these substances, which had been allowed to equilibrate with their respective aqueous saturated solutions for several days at T≈298 K and then dried with air at T≈296 K for ≈24 h. The crystalline forms of the substances were identified by comparison of the results of X-ray diffraction measurements with results from the literature. Also, molar enthalpies of solution ΔsolHm(cal) for these substances were measured by using an isoperibol solution calorimeter. A self-association (stacking) model was used to estimate values of the activity coefficients γ and relative apparent molar enthalpies Lφ for these substances. These γ and Lφ values were used to adjust the measured values of m(sat) and ΔsolHm(cal) to the standard state and thus obtain values of the standard molar Gibbs free energy ΔsolGm and enthalpy changes ΔsolHm for the dissolution reactions of these substances. The values of the pKs and of the standard molar enthalpies of the ionization reactions were also used to account for speciation of the substances in the calculations of ΔsolGm and ΔsolHm. Values of standard molar enthalpies of formation ΔfHm, standard molar Gibbs free energies of formation ΔfGm, and standard partial molar entropies S2,m for the aqueous species of hypoxanthine and xanthine were calculated. A detailed summary and comparison of thermodynamic results from the literature for these substances is presented.  相似文献   

10.
Saturation molalities m(sat) in H2O(l) have been measured for the substances adenosine(cr), guanosine · 2H2O(cr), inosine(cr), and xanthosine · 2H2O(cr) over the temperature range T=287.91 K to T=308.18 K by using h.p.l.c. The indicated states of hydration of these substances were established by performing Karl–Fischer analyses of samples of these substances which had been equilibrated over H2O(l) and of samples obtained by passing air over the wet crystals (air dried samples). The crystalline phases of these substances were identified by comparison of the results of X-ray diffraction measurements with results from the literature. Molar enthalpies of solution ΔsolHm for adenosine(cr) and inosine(cr) were measured by using an isoperibol solution calorimeter. A “stacking” or “self-association” model was used to estimate values of the activity coefficients γ and relative apparent molar enthalpies Lφ for these substances. These γ and Lφ values were used to adjust the measured values of m(sat) and ΔsolHm to the standard state and obtain values of the standard molar Gibbs free energy and enthalpy changes ΔsolGm and ΔsolHm, respectively, for the dissolution reactions of these substances. Values of ΔsolHm calculated from the temperature dependence of values of ΔsolGm were in good agreement with the values of ΔsolHm obtained by using calorimetry.  相似文献   

11.
Geometry, thermodynamic, and electric properties of the π‐EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6‐31G* and, partly, DFT‐D/6‐31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB–TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10?10 m and the corresponding BSSE corrected interaction energy is ?51.3 kJ mol?1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2–TCNE and HMB–TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10?10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06–3.16 × 10?10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB–TCNE complex formation in gas phase are: ΔH0 = ?61.59 kJ mol?1, ΔS = ?143 J mol?1 K?1, ΔG0 = ?18.97 kJ mol?1, and K = 2,100 dm3 mol?1. Experimental data, however, measured in CCl4 are significantly lower: ΔH0 = ?34 kJ mol?1, ΔS = ?70.4 J mol?1 K?1, ΔG0 = ?13.01 kJ mol?1, and K = 190 dm3 mol?1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol?1 which is very close to our PCM value 6.5 kJ mol?1. MP2/6‐31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6‐31G* study supplemented by DFT‐D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of π‐EDA complexes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg–1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.  相似文献   

13.
Using dipole moment measurements, the Gibbs energy ΔGPT of proton transfer in the complex of 2,6-dichlorophenol with triethylamine was determined in different solvents. The effect of solvent on ΔGPT was quantitatively discussed in terms of reaction field models for homogeneous and heterogeneous dielectric media. The specific complex–solvent interactions which, in addition to electrostatic interaction, stabilize the PT polar form of the complex is discussed as a function of the empirical parameters describing the polar and hydrogen-donating (electron-accepting) properties of the solvent.  相似文献   

14.
The stabilities (as ΔG0f) of monatomic lanthanide anions in liquid ammonia are estimated from a simple electrostatic model. It is shown that the existence of lanthanide anions in this solvent is highly improbable.  相似文献   

15.
Forty ionic molecules are studied by DFT (B3LYP, B3P86), MP4 with different basis sets using the PCM/UAHF model within the self-consistent reaction-field method to assess solvent effects. For these molecules, the solvation free energies (ΔG sol) in water and the dipole moments in vacuoas well as in water are obtained. By comparing the calculated values of ΔG sol with experimental values and molecular simulation results, it is found that the ΔG sol values generated by the DFT method are in better agreement with experimental values. Moreover, especially for the B3LYP/6-31+G level, the results of both ΔG sol and dipole moments are more accurate considering the lower computational cost. It can be noted that the dipole moments of solutes in water show some increase relative to those in vacuo.  相似文献   

16.
The thermodynamic activation parameters, enthalpies, ΔH?, free energies, ΔG , and entropies, ΔS?, for viscous flow of the systems, water (W)?+?n-butylamine (NBA), W?+?sec-butylamine (SBA) and W?+?tert-butylamine (TBA), have been determined by using the density and the viscosity data. These properties and their excess values have been represented graphically against their composition. With respect to the composition, ΔG show a typical behaviour for all the systems – a fast rise in the water-rich region with a maximum followed by the values that decline up to the pure state of amines. The ΔH? and ΔS? versus composition curves follow the similar trend. For all systems the excess properties, ΔG ≠E, ΔH ?≠E and ΔS?≠E are characterized by sharp maxima in the water-rich region, which are thought to be mainly due to the hydrophobic hydration and the hydrophilic effect.  相似文献   

17.
The effect of added nucleophiles (methanol and 1,4-butanediol) on the steady-state kinetics of α-chymotryptic hydrolysis of a series of N-acetyl-L-amino acid methyl esters, R-CH(NHCOCH3)C(O)OCH3, has been studied. As a result, the rate and equilibrium constants of the ‘elementary’ steps of the enzyme process have been determined. It has also been demonstrated how the free energy–reaction coordinate profile changes if the structure (the size of the hydrocarbon chain) of the ‘chemically inert’ substrate fragment R is varied. The effects observed can be described by the following equation: where ΔGs and ΔGa are the free energies of formation of metastable intermediates, i.e., the enzyme–substrate complex and the acylenzyme, respectively, ΔG2≠ and ΔG3≠ are the free energies of activation for the chemical steps, i.e., enzyme acylation and acylenzyme hydrolysis, respectively; and ΔGtrans(R) is the free energy of transfer of substrate group R from water into a nonaqueous solvent. To explain the results obtained, a mechanism for enzyme–substrate interaction is suggested according to which the potential free energy of sorption of substrate group R on the enzyme is 2 ΔGtrans(R). Such a high gain in the free energy of hydrophobic interaction may only be realized if (a) in the free enzyme the sorption region has a thermodynamically unfavorable contact with the aqueous medium, and (b) water is forced out of the active center as a result of the hydrophobic interaction of substrate group R with the enzyme. Such a model is in agreement with the published x-ray data on the structure of the crystalline enzyme. The kinetic experiment has proved that not all the potential free energy of sorption is realized as binding force. Thus the true free energy of the binding of substrate group R with the protein does not exceed half the maximum value, both in the enzyme–substrate complex and acylenzyme.  相似文献   

18.
The stabilities (as ΔGfo) of monatomic actinide anions in liquid ammonia are estimated from a simple electrostatic model. It is shown that, with the possible exception of Md?, the existence of actinide anions in this solvent is highly improbable.  相似文献   

19.
The solvent Stark effect on the spectral shifts of anthracene is studied with temperature-dependent solvatochromic measurements. The Stark contribution ΔvStark to the absorption shift Δvp in polar solvents is measured to be ΔvStark=(53±35) cm−1, in reasonable agreement with dielectric continuum theory estimate of 28 cm−1, whereas the major shift Δvp∼300 cm−1 presumably originates from the solute quadrupole. We pay attention to the accurate correction of Δvp for the nonpolar contribution that is crucial when the shifts are modest in magnitude.  相似文献   

20.
Ab initio calculations were carried out to understand the effect of electron donating groups (EDG) and electron withdrawing groups (EWG) at the C5 position of cytosine (Cyt) and saturated cytosine (H2Cyt) of the deamination reaction. Geometries of the reactants, transition states, intermediates, and products were fully optimized at the B3LYP/6-31G(d,p) level in the gas phase as this level of theory has been found to agree very well with G3 theories. Activation energies, enthalpies, and Gibbs energies of activation along with the thermodynamic properties (ΔE, ΔH, and ΔG) of each reaction were calculated. A plot of the Gibbs energies of activation (ΔG) for C5 substituted Cyt and H2Cyt against the Hammett σ-constants reveal a good linear relationship. In general, both EDG and EWG substituents at the C5 position in Cyt results in higher ΔG and lower σ values compared to those of H2Cyt deamination reactions. C5 alkyl substituents ( H,  CH3,  CH2CH3,  CH2CH2CH3) increase ΔG values for Cyt, while the same substituents decrease ΔG values for H2Cyt which is likely due to steric effects. However, the Hammett σ-constants were found to decrease at the C5 position of cytosine (Cyt) and saturated cytosine (H2Cyt) on the deamination reaction. Both ΔG and σ values decrease for the substituents Cl and Br in the Cyt reaction, while ΔG values increase and σ decrease in the H2Cyt reaction. This may be due to high polarizability of bromine which results in a greater stabilization of the transition state in the case of bromine compared to chlorine. Regardless of the substituent at C5, the positive charge on C4 is greater in the TS compared to the reactant complex for both the Cyt and H2Cyt. Moreover, as the charges on C4 in the TS increase compared to reactant, ΔG also increase for the C5 alkyl substituents ( H,  CH3,  CH2CH3,  CH2CH2CH3) in Cyt, while ΔG decrease in H2Cyt. In addition, analysis of the frontier MO energies for the transition state structures shows that there is a correlation between the energy of the HOMO–LUMO gap and activation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号