首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper deals with the early stage of impact of a solid cylindrical body on the surface of a cylindrical cavity for zero and non-zero gap between the cavity surface and the body surface. As a result, the stated mixed non-stationary boundary value problem with the unknown variable in the time boundary is formulated. Its solution is reduced to a joint solution of an infinite system of linear integral Volterra equations of the second kind and the differential equation of the body movement. In the case of simplified formulation, the solution is reduced to the infinite sequence of the linear integral Volterra equations. Hydrodynamic and kinematic characteristics are also obtained.  相似文献   

2.
An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction problem into body and free‐surface problems. After the decomposition, the body problem satisfies a modified body boundary condition in an unbounded fluid domain, while the free‐surface problem satisfies modified nonlinear free‐surface boundary conditions. It is then shown that the nonlinear free‐surface problem can be further reduced to a closed system of two nonlinear evolution equations expanded in infinite series for the free‐surface elevation and the velocity potential at the free surface. For numerical experiments, the body problem is solved using a distribution of singularities along the body surface and the system of evolution equations, truncated at third order in wave steepness, is then solved using a pseudo‐spectral method based on the fast Fourier transform. A circular cylinder translating steadily near the free surface is considered and it is found that our numerical solutions show excellent agreement with the fully nonlinear solution using a boundary integral method. We further validate our solutions for a submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other analytical and numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
An incompressible Navier–Stokes solver based on a cell‐centre finite volume formulation for unstructured triangular meshes is developed and tested. The solution methodology makes use of pseudocompressibility, whereby the convective terms are computed using a Godunov‐type second‐order upwind finite volume formulation. The evolution of the solution in time is obtained by subiterating the equations in pseudotime for each physical time step, with the pseudotime step set equal to infinity. For flows with a free surface the computational mesh is fitted to the free surface boundary at each time step, with the free surface elevation satisfying a kinematic boundary condition. A ‘leakage coefficient’, ε, is introduced for the calculation of flows with a free surface in order to control the leakage of flow through the free surface. This allows the assumption of stationarity of mesh points to be made during the course of pseudotime iteration. The solver is tested by comparing the output with a wide range of documented published results, both for flows with and without a free surface. The presented results show that the solver is robust. © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The Navier–Stokes–Boussinesq equations governing the transport of momentum, mass and heat in a non-isothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a non-orthogonal co-ordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.  相似文献   

5.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

6.
This study develops a general theory for small-deformation viscoplasticity based on a system of microforces consistent with its own balance; a mechanical version of the second law that includes, via the microforces, work performed during viscoplastic flow; a constitutive theory that allows for dependences on plastic strain-gradients. The microforce balance and the constitutive equations—suitably restricted by the second law—are shown to be together equivalent to a flow rule that accounts for variations in free energy due to flow. When this energy is the sum of an elastic strain energy and a defect energy quadratic, isotropic, and positive definite in the plastic-strain gradients, the flow rule takes the form of a second-order parabolic PDE for the plastic strain coupled to the usual PDE arising from the standard macroscopic force balance and the elastic stress-strain relation. The classical macroscopic boundary conditions are supplemented by nonstandard boundary conditions associated with viscoplastic flow. As an aid to solution, a weak (virtual power) formulation of the nonlocal flow rule is derived.  相似文献   

7.
A direct central collision of two identical bodies of revolution is studied. A nonstationary mixed boundary-value problem with an unknown moving boundary is formulated. Its solution is represented by a series in term of Bessel functions. An infinite system of Volterra equations of the second kind for the unknown expansion coefficients is derived by satisfying the boundary conditions. The basic characteristics of the collision process are determined depending on the curvature of the frontal surface of the bodies  相似文献   

8.
In this paper, we present a non-local non-linear finite element formulation for the Timoshenko beam theory. The proposed formulation also takes into consideration the surface stress effects. Eringen׳s non-local differential model has been used to rewrite the non-local stress resultants in terms of non-local displacements. Geometric non-linearities are taken into account by using the Green–Lagrange strain tensor. A C0 beam element with three degrees of freedom has been developed. Numerical solutions are obtained by performing a non-linear analysis for bending and free vibration cases. Simply supported and clamped boundary conditions have been considered in the numerical examples. A parametric study has been performed to understand the effect of non-local parameter and surface stresses on deflection and vibration characteristics of the beam. The solutions are compared with the analytical solutions available in the literature. It has been shown that non-local effect does not exist in the nano-cantilever beam (Euler–Bernoulli beam) subjected to concentrated load at the end. However, there is a significant effect of non-local parameter on deflections for other load cases such as uniformly distributed load and sinusoidally distributed load (Cheng et al. (2015) [10]). In this work it has been shown that for a cantilever beam with concentrated load at free end, there is definitely a dependency on non-local parameter when Timoshenko beam theory is used. Also the effect of local and non-local boundary conditions has been demonstrated in this example. The example has also been worked out for other loading cases such as uniformly distributed force and sinusoidally varying force. The effect of the local or non-local boundary conditions on the end deflection in all these cases has also been brought out.  相似文献   

9.
Computational fluid mechanics techniques for examining free surface problems in two‐dimensional form are now well established. Extending these methods to three dimensions requires a reconsideration of some of the difficult issues from two‐dimensional problems as well as developing new formulations to handle added geometric complexity. This paper presents a new finite element formulation for handling three‐dimensional free surface problems with a boundary‐fitted mesh and full Newton iteration, which solves for velocity, pressure, and mesh variables simultaneously. A boundary‐fitted, pseudo‐solid approach is used for moving the mesh, which treats the interior of the mesh as a fictitious elastic solid that deforms in response to boundary motion. To minimize mesh distortion near free boundary under large deformations, the mesh motion equations are rotated into normal and tangential components prior to applying boundary conditions. The Navier–Stokes equations are discretized using a Galerkin–least square/pressure stabilization formulation, which provides good convergence properties with iterative solvers. The result is a method that can track large deformations and rotations of free surface boundaries in three dimensions. The method is applied to two sample problems: solid body rotation of a fluid and extrusion from a nozzle with a rectangular cross‐section. The extrusion example exhibits a variety of free surface shapes that arise from changing processing conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
There is some considerable difficulty in determining the solution uniquely for a propagating phase boundary in shape memory alloy (SMA) bar. In this paper, we establish an admissibility condition starting from a three-dimensional (3-D) internal-variable formulation to resolve this issue. We adopt a 3-D formulation in literature which is based on a constitutive model with specific forms of the Helmholtz free energy and dissipation rate. Then the 3-D dynamical equations are reduced to the 1-D rod equations for three phase regions (coupled with the radial effect and surface condition) by using two small parameters. Connection conditions at the phase interfaces are determined. By considering the traveling-wave solution for the rod system, we eventually derive three conditions across a sharp phase boundary corresponding to the 1-D sharp-interface model, including the two usual jump conditions and an additional condition. The third condition is then used to supplement the 1-D sharp-interface model to study an impact problem. The unique solution is constructed analytically for all possible impact velocity, including three kinds of wave patterns according to different levels of the impact velocity. The results are compared with those obtained by the maximal dissipation rate criterion.  相似文献   

11.
The immersed boundary approach for the modeling of complex geometries in incompressible flows is examined critically from the perspective of satisfying boundary conditions and mass conservation. It is shown that the system of discretized equations for mass and momentum can be inconsistent, if the velocity is used in defining the force density to satisfy the boundary conditions. As a result, the velocity is generally not divergence free and the pressure at locations in the vicinity of the immersed boundary is not physical. However, the use of the pseudo‐velocities in defining the force density, as frequently done when the governing equations are solved using a fractional step or projection method, combined with the use of the specified velocity on the immersed boundary, is shown to result in a consistent set of equations which allows a divergence‐free velocity but, depending on the time step, is shown to have the undesirable effects of inaccurately satisfying the boundary conditions and allowing a significant permeability of the immersed boundary. If the time step is reduced sufficiently, the boundary conditions on the immersed boundary can be satisfied. However, this entails an unacceptable increase in computational expense. Two new methods that satisfy the boundary conditions and allow a divergence‐free velocity while avoiding the increased computational expense are presented and shown to be second‐order accurate in space. The first new method is based on local time step reduction. This method is suitable for problems where the immersed boundary does not move. For these problems, the first new method is shown to be closely related to the second new method. The second new method uses an optimization scheme to minimize the deviation from the interpolation stencil used to represent the immersed boundary while ensuring a divergence‐free velocity. This method performs well for all problems, including those where the immersed boundary moves relative to the grid. Additional results include showing that the force density that is added to satisfy the boundary conditions at the immersed boundary is unbounded as the time step is reduced and that the pressure in the vicinity of the immersed boundary is unphysical, being strongly a function of the time step. A method of computing the total force on an immersed boundary which takes into account the specifics of the numerical solver used in the iterative process and correctly computes the total force irrespective of the residual level is also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
13.
A new Boundary Integral Equation (BIE) formulation for Stokes flow is presented for three-dimensional and axisymmetrical problems using non-primitive variables, assuming velocity field is prescribed on the boundary. The formulation involves the vector potential, instead of the classical stream function, and all three components of the vorticity are implied. Furthermore, following the Helmholtz decomposition, a scalar potential is added to represent the solenoidal velocity field. Firstly, the BIEs for three-dimensional flows are formulated for the vector potential and the vorticity by employing the fundamental solutions in free space of vector Laplace and biharmonic equations. The equations for axisymmetric flows are then derived from the three-dimensional formulation in a second step. The outcome is a domain integral free BIE formulation for both three-dimensional and axisymmetric Stokes flows with prescribed velocity boundary condition. Numerical results are included to validate and show the efficiency of the proposed axisymmetric formulation.  相似文献   

14.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

15.
Stream tube analysis, already applied to two-dimensional extrudate swell problems involving rate and integral constitutive equations for incompressible fluids, is now considered in the problem of free surface determination in a three-dimensional flow situation. The method allows computation of the unknown free surface by considering only a ‘peripheral stream tube’ limited by the wall and the jet surface and an inner stream surface. Those boundary surfaces are determined by considering the conservation equations together with boundary condition equations, solved by the Levenberg/Marquatdt optimization algorithm. The method leads to a considerable reduction in the number of degrees of freedom and the storage area. As in a previous study in the two-dimensional case, singularity problems in the vicinity of the junction points between the wall and the free surface are avoided. However, the numerical method still allows evaluati on of stress peaks due to the singularity at the exit, as may be observed for results obtained with a Newtonian fluid in a duct of square cross-section.  相似文献   

16.
The present work deals with the experimental and numerical features of the flow of a linear low-density polyethylene melt (LLDPE) at 160°C at the exit of a die of square cross-section. The rheological properties of the fluid are fitted by a Wagner's memory-integral constitutive equation. The characteristics of the extrudate jet are determined by optical means at different flow rates. The stream-tube analysis, already applied to two-dimensional extrudate swell problems involving rate and integral constitutive equations, is considered to simulate the flow field. The method avoids particle tracking problems related to integral models and allows computation of the unknown free surface by considering only a `peripheral stream tube' limited by the wall and the jet surface and an inner stream surface. Those boundary surfaces are determined by considering the conservation equations together with boundary condition equations, solved by the Levenberg–Marquardt optimization algorithm. The method leads to a considerable reduction in the number of degrees of freedom and the storage area. The numerical results are found to be generally consistent with the experimental data and highlight the growing importance of stress peaks due to the singularity at the exit when the flow rate increases.  相似文献   

17.
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A new numerical-analytical method is proposed and demonstrated using an example of dynamic problems of a thermoviscoelastic body. In the general formulation, the thermoviscoelastic problem is split into three simpler problems. In the first problem, boundary functions that should satisfy only boundary conditions are determined. The second problem with homogeneous boundary conditions and inhomogeneous initial conditions is reduced to an eigenvalue problem by introducing special variables and separating time. This problem is solved by organizing integral superpositions with respect to the angular parameter. A linear algebraic system is obtained as a result of satisfaction of the boundary conditions at points that partition the curvilinear boundary of the body into small segments. After the eigenfunctions and eigenvalues are determined, the third problem with homogeneous boundary and initial conditions is solved by spectral decomposition of unknown functions and inhomogeneous terms in a coupled system of ordinary differential equations.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 158–169, March–April, 2005.  相似文献   

19.
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.The English text was polished by Keren Wang  相似文献   

20.
Satisfying the boundary conditions at the free surface may impose severe difficulties to the computation of turbulent open-channel flows with finite-volume or finite-element methods, in particular, when the flow conditions are nearly critical. It is proposed to apply an iteration procedure that is based on an asymptotic expansion for large Reynolds numbers and Froude numbers close to the critical value 1.The iteration procedure starts by prescribing a first approximation for the free surface as it is obtained from solving an ODE that has been derived previously by means of an asymptotic expansion (Grillhofer and Schneider, 2003). The numerical solution of the full equations of motion then gives a surface pressure distribution that differs from the constant value required by the dynamic boundary condition. To determine a correction to the elevation of the free surface we next solve an ODE that is obtained from the asymptotic analysis of the flow with a prescribed pressure disturbance at the free surface. The full equations of motion are then solved for the corrected surface, and the procedure is repeated until criteria of accuracy for surface elevation and surface pressure, respectively, are satisfied.The method is applied to an undular hydraulic jump as a test case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号