首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photografting of polymers onto ultrafine inorganic particles, such as silica and titanium oxide, initiated by azo groups introduced onto these surfaces was investigated. The introduction of azo groups onto the particles was achieved by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with surface isocyanate groups, which were introduced by the treatment with tolylene 2,4-diisocyanate. It was found that the photopolymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and N-vinylcarbazole, is initiated by ultrafine particles having azo groups. The corresponding polymers were effectively grafted onto these surfaces through the propagation of the polymer from the surface radicals formed by the photodecomposition of the azo groups: e.g., the percentage of grafting of PMMA and polystyrene onto silica was reached to 112 and 176%, respectively. The percentage of grafting onto silica in the graft polymerization initiated by photodecomposition of surface azo groups was much larger than that initiated by thermal decomposition. Polymer-grafted ultrafine particles thus obtained gave a stable colloidal dispersion in good solvents for the grafted chain. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
3.
The grafting of polypropylene glycol (PPG) onto an ultrafine ferrite by the reaction of hydroxyl groups on the surface with isocyanate-capped PPG (PPG-NCO), prepared by the reaction of an equimolecular amount of PPG with tolylene 2,4-diisocyanate, was investigated. When PPG-NCO (M n=2.5×103) was heated with the ferrite in bulk, the percentage of grafting onto the ferrite at 120 °C was increased up to 18.5%. On the contrary, the grafting by the reaction of PPG with hydroxyl groups on the ferrite at 120°C was scarcely observed. The grafted PPG onto the ferrite was removed by hydrolysis with a dilute methanol solution of potassium hydroxide. Therefore, it was considered that PPG was grafted onto the ferrite surface with urethane bond. The grafting of PPG onto the surface was also confirmed by infrared spectra. The reaction of PPG-NCO with the ferrite was accelerated by the addition of-picoline as a catalyst. PPG-grafted ferrite was found to produce a stable colloidal dispersion in organic solvents. Furthermore, the effect of molecular weight of PPG-NCO on the grafting onto the ferrite was discussed.  相似文献   

4.
A novel approach for the surface modification of hydroxyapatite (HAp) nanocrystals is described by grafting polymerization of vinyl phosphonic acid (VPA) using a redox initiating system in an aqueous media. Fourier transform infrared (FT-IR) and XRD analyses confirmed the modification reaction on HAp surfaces. Inductively coupled plasma mass spectroscopy (ICP MS) showed that the Ca/P molar ratio decreased from 1.67 to 1.36 with increasing the feed VPA amount. Zeta potentials of unmodified HAp and modified HAp in phosphate-buffered saline (PBS) solutions (pH 7.4, ionic strength = 10 mM) were negative and decreased with increasing the amount of grafted PVPA. Transmission electron microscopy (TEM) measurements and time-dependent phase monitoring indicated that the colloidal stability of modified HAp over unmodified HAp in water dramatically increased and tended to exist as single nanocrystals without aggregation.  相似文献   

5.
Conclusions The reaction of yeast inorganic pyrophosphatase with an excess of maleic anhydride at 2° C for 5 min leads to the acylation of all -amino groups of lysine residues.The protective groups are completely removed at pH 3.5 for 16 hr at 60° C. Acylation with maleic anhydride is accompanied by the dissociation of the yeast inorganic pyrophosphatase into its subunits.Khimiya Prirodnykh Soedinenii, Vol. 6, No. 1, pp. 123–127, 1970  相似文献   

6.
Chemistry of Natural Compounds - The reaction of yeast inorganic pyrophosphatase with an excess of maleic anhydride at 2° C for 5 min leads to the acylation of all ε-amino groups of...  相似文献   

7.
The photoinitiated grafting of maleic anhydride (MAH) onto polypropylene with the use of benzophenone (BP) as the initiator has been investigated. In comparison with the process of thermally initiated grafting with peroxide as the initiator, photoinitiated grafting affords a higher grafting efficiency. The efficient photografting sensitized by BP can be explained by two possible mechanistic processes: the sensitization of the formation of the excited triplet state of MAH by BP and electron transfer followed by proton transfer between MAH and the benzopinacol radical, which may operate together. In the former case, the generated MAH excited triplet state abstracts a hydrogen from the polymer substrate to initiate grafting. A rate constant of 3.6 × 109 M ?1 s ?1 has been determined by laser flash photolysis for the process of quenching the excited triplet state of BP with ground‐state MAH. In comparison, the rate constant for the quenching of the excited triplet state of BP by hydrogen abstraction has been determined to be 4.1 × 105 M ?1 s ?1. In a study of photografting using a model compound, 2,4‐dimethylpentane, as a small‐molecule analogue of polypropylene, the loss of BP was significantly reduced upon the addition of MAH, and this is consistent with the proposed mechanistic processes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1953–1962, 2004  相似文献   

8.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
To graft polymers with controlled molecular weight and narrow molecular weight distribution, the grafting of polymers onto ultrafine silica surface by the termination of living polymer cation with amino groups introduced onto the surface was investigated. The introduction of amino or N-phenylamino groups onto the silica surface was achieved by the treatment of silica with γ-aminopropyltriethxysilane or N-phenyl-γ-aminopropyltrimethoxysilane. It was found that these amino groups on silica are readily reacted with living poly(isobutyl vinyl ether) (polyIBVE), which was generated with CF3COOH/ZnCl2 initiating system, and polyIBVE with controlled molecular weight and narrow molecular weight distribution is grafted onto the surface. By the termination of living poly(2-methyl-2-oxazoline), which was generated with methyl p-toluenesulfonate initiator, with amino groups on silica, polyMeOZO was also grafted onto the surface. The percentage of grafting of polymer onto the silica surface decreased with increasing molecular weight of the living polymer, because the steric hindrance of silica surface increases with increasing molecular weight of living polymer. Polymer-grafted silica gave a stable dispersion in a good solvent for grafted chains. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The structural features of the grafting of maleic anhydride onto low-molecular-weight compounds have been elucidated using several spectroscopic and analytical techniques. Conclusive evidence for the occurrence of singly grafted anhydride residues in multiply grafted products has been established using 2,3-13C2 labeled maleic anhydride. In homogeneous solution, at the low concentrations of maleic anhydride employed, there is little evidence for oligomeric or polymeric grafts to dodecane, pristane, or squalane. The results suggest that isothermal grafting of maleic anhydride to hydrocarbon polymers should also lead to a predominance of single grafts. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3817–3825, 1999  相似文献   

11.
The surface-grafting of polymers onto aramid, poly(p-phenylene terephthalamide), powder surface by the reaction of acyl chloride groups on the surface with functional polymers having terminal hydroxyl and amino groups was investigated. The introduction of acyl chloride groups onto the aramid powder surface was achieved by the reaction of the aramid powder with adipoyl dichloride: the acyl chloride group content of the surface was estimated to be 1.14 mmol/g (0.17 mmol/m2) by elemental analysis. It was found that by the reaction of acyl chloride groups on the surface with functional polymers, such as terminal diol-type poly(propylene oxide) (PPG) and terminal diamine-type poly(dimethylsiloxane) (SDA), these polymers were grafted onto the aramid powder surface; the percentage of surface grafting of PPG and SDA onto the aramid powder was 16.7 and 22.4%, respectively. The thermogravimetric curve of PPG surface-grafted aramid powder exhibited an initial weight loss at about 250°C and a second weight loss at about 500°C. This indicated that the grafting of PPG is limited to the powder surface. The wettability of the aramid powder surface turned from hydrophobic to hydrophilic by the surface-grafting of PPG onto the surface.  相似文献   

12.
This paper describes the radical graft polymerization of vinyl monomers from glass fiber surface initiated by alkylazo groups introduced onto the fiber surface. The introduction of azo groups onto the glass fiber surface was achieved by reaction of isocyanate groups which were previously attached onto the surface with two kinds of azo initiators, 4,4′-azobis(4-cyanopentanoic acid) (ACPA) and 2,2′-azobis(2-cyanopropanol) (ACP). The amounts of surface azo groups introduced by ACPA and ACP were both determined to be 1.3 × 10−5 mol g−1 by nitrogen analysis. The radical graft polymerization of methyl methacrylate (MMA) was found to be initiated in the presence of the glass fiber having surface azo groups. During the polymerization, part of resultant poly(MMA) grafted onto the fiber surface through propagation of the polymer from the surface radicals produced by the decomposition of the azo groups. The percentage of grafting of poly(MMA) reached 48.1% after 24 h. The graft polymerizations of other monomers, such as styrene, N-vinylcarbazole, and acrylic acid, were also initiated by the surface azo groups, and the corresponding polymer effectively grafted onto the surface. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2121–2128, 1999  相似文献   

13.
The novel monomer, p-vinylphenoxy(trimethyl)silane, has been prepared and copolymerized with styrene. The hydrolysis of the copolymer in dioxan has been examined briefly. Monomers of the type p-CH2CHC6H4SiMe2R (RH, OMe, OEt, OPr, CH2Cl and NMc2) have been prepared, polymerized and the resulting polymers cross-linked by hydrolysis.  相似文献   

14.
15.
A series of 13C‐enriched maleic anhydride grafted isotactic polypropylene samples were prepared in solution at 170 °C by changes in the initial maleic anhydride content. The NMR spectra of the samples showed that the signals of the maleic anhydride attached to the tertiary carbons of the isotactic polypropylene chains increased considerably with increasing maleic anhydride content, whereas the signals of the maleic anhydride on the radical chain ends (with a single bond) arising from β scission did not. On the other hand, the signals of the maleic anhydride on the radical chain ends with double bonds increased markedly with increasing maleic anhydride content, and this suggested that β scission could occur extensively after maleic anhydride was attached to the tertiary carbons. As a result, the molecular weight of the grafted polypropylene decreased significantly with increasing maleic anhydride content in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5529–5534, 2005  相似文献   

16.
17.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

18.
The effective grafting of vinyl polymers onto an ultrafine silica surface was successfully achieved by the photopolymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface with Mn2(CO)10 under UV irradiation at 25 °C. The introduction of trichloroacetyl groups onto the surface of silica was achieved by the reaction of trichloroacetyl isocyanate with surface amino groups, which were introduced by the treatment of silica with 3‐aminopropyltriethoxysilane. During the polymerization, the corresponding polymers were effectively grafted onto the surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mn2(CO)10. The percentage of poly(methyl methacrylate) grafting onto the silica reached 714.6% after 90 min. The grafting efficiency (proportion of grafted polymer to total polymer formed) in the polymerization of methyl methacrylate was very high, about 80%, indicating the depression of formation of ungrafted polymer. Polymer‐grafted silica gave a stable colloidal dispersion in good solvents for grafted polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2157–2163, 2001  相似文献   

19.
To improve the tribological performance of nano‐SiC particles filled epoxy composites, surface modification of the fillers is necessary. By means of soapless emulsion polymerization method, graft polymerization of glycidyl methacrylate (GMA) onto the surface of alkyl nano‐SiC was carried out, resulting in composite particles with SiC core and polymeric shell in which polyglycidyl methacrylate (PGMA) is chemically attached to the nanoparticles by the double bonds introduced during the pretreatment with a coupling agent. By analyzing the reaction mechanism, the emulsion polymerization loci were found to be situated at the SiC surface. Also, the factors affecting the grafting yielding of PGMA on the particles were investigated, including monomer concentration, initiator consumption, reaction temperature, reaction time, etc. Accordingly, an optimum grafting reaction condition was determined. It was shown that the grafted nanoparticles exhibit greatly improved dispersibility in good solvent for the grafting polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3842–3852, 2004  相似文献   

20.
Maleation of a thermoplastic elastomer, styrene-[ethylene-butylene]-styrene (SEBS) triblock copolymer, was carried out by a solution grafting reaction with maleic anhydride initiated by dicumyl peroxide. The reaction products from the graft reaction in xylene, commonly chosen as the solvent for maleation graft reactions, were identified using liquid chromatograph (LC), IR, and 13C-NMR. Side products from the graft reaction were identified by the LC analysis and, it was concluded that xylene affected the graft reaction through its active methyl groups. Reaction mechanisms were investigated by performing free radical kinetics analysis. The reaction orders and the apparent rate constant were estimated. It was concluded that a proper choice of the solvent might favor better graft efficiency. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号