首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring a mixture of acetone and perdeuterated acetone (acetone-d6) with an ultra-high resolution drift time ion mobility spectrometer (resolving power of Rp?=?235) and ultraviolet ionization (10.6 eV) at ambient pressure reveals three separated peaks. Two of the peaks can easily be associated with acetone and perdeuterated acetone. In a former publication several findings indicated an exchange of a methyl group and the formation of a H3COCD3 related peak. In this work the formed ion species were analyzed with a high resolution drift time ion mobility time of flight mass spectrometer. The mass spectra clearly show the formation of three proton-bound dimer peaks whereas the peak between acetone and acetone-d6 is a proton-bound mixed dimer consisting of one acetone and one acetone-d6 molecule.  相似文献   

2.
The infrared multiphoton dissociation (IRMPD) spectra of three homogenous proton-bound dimers are presented and the major features are assigned based on comparisons with the neutral alcohol and with density functional theory calculations. As well, the IRMPD spectra of protonated propanol and the propanol/water proton-bound dimer (or singly hydrated protonated propanol) are presented and analysed. Two primary IRMPD photoproducts were observed for each of the alcohol proton bound dimers and were found to vary with the frequency of the radiation impinging upon the ions. For example, when the proton-bound dimer absorbs weakly a larger amount of S(N)2 product, protonated ether and water, are observed. When the proton-bound dimer absorbs more strongly, an increase in the simple dissociation product, protonated alcohol and neutral alcohol, is observed. With the aid of RRKM calculations this frequency dependence of the branching ratio is explained by assuming that photon absorption is faster than dissociation for these species and that only a few photons extra are necessary to make the higher-energy dissociation channel (simple cleavage) competitive with the lower energy (S(N)2) reaction channel.  相似文献   

3.
Structural aspects of proton-bound dimers composed of amino acids with aliphatic side chains are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. Features in the IRMPD spectra in the 700-2,000 cm-1 range are due primarily to C=O stretching, NH2 bending, and COH bending. It was possible to distinguish between isomeric structures by comparing the experimental IRMPD spectra and those predicted using B3LYP/6-31+G(d,p). It was possible, based on the calculations and IRMPD spectra, to assign the experimental spectrum of the glycine proton-bound dimer to a structure which was slightly different from that assigned by previous spectroscopic investigations and in agreement with recent thermochemical studies. Since all proton-bound dimers studied here, composed of the different amino acids, have very similar spectra, it is expected that they also have very similar lowest-energy structures including the mixed alanine/glycine proton-bound dimer. In fact, the spectra are so similar that it would be very challenging to distinguish, for example, the glycine proton-bound dimer from the alanine or valine proton-bound dimers in the 700-2,000 cm-1 range. According to the calculated IR spectra it is shown that in the approximately 2,000-3,200 cm-1 range differentiating between different structures as well as different proton-bound dimers may be possible. This is due mainly to differences in the asymmetric stretch of the binding proton which is predicted to occur in this region.  相似文献   

4.
Mass spectrometry-based methods have been employed in order to study the reactions of non- (h(6)/h(6)), half (d(6)/h(6)), and fully (d(6)/d(6)) deuterium labeled protonated dimers of acetone in the gas phase. Neither kinetic nor thermodynamic isotope effects were found. From MIKES experiments (both spontaneous and collision-induced dissociations), it was found that the relative ion yield (m/z 65 vs m/z 59) from the dissociation reaction of half deuterium labeled (d(6)/h(6)) protonated dimer of acetone is dependent on the internal energy. A relative ion yield (m/z 65 vs m/z 59) close to unity is observed for cold, nonactivated, metastable ions, whereas the ion yield is observed to increase (favoring m/z 65) when the pressure of the collision gas is increased. This is in striking contrast to what would be expected if a kinetic isotope effect were present. A combined study of the kinetics and the thermodynamics of the association reaction between acetone and protonated acetone implicates the presence of at least two isomeric adducts. We have employed G3(MP2) theory to map the potential energy surface leading from the reactants, acetone and protonated acetone, to the various isomeric adducts. The proton-bound dimer of acetone was found to be the lowest-energy isomer, and protonated diacetone alcohol the next lowest-energy isomer. Protonated diacetone alcohol, even though it is an isomer hidden behind many barriers, can possibly account for the observed relative ion yield and its dependence on the mode of activation.  相似文献   

5.
Photoexcitation (using 157 nm vacuum ultraviolet radiation) of proton-bound peptide complexes leads to water elimination and the formation of longer amino acid chains. Thus, it appears that proton-bound dimers are long-lived intermediates along the pathway to peptide formation. Product specificity can be controlled by selection of specific complexes and the incorporation of blocking groups at the N- or C-termini. The product peptide sequences are confirmed using collision-induced dissociation.  相似文献   

6.
The proton- and the sodium ion-bound glycine homodimers are studied by a combination of infrared multiple photon dissociation (IRMPD) spectroscopy in the N-H and O-H stretching region and electronic structure calculations. For the proton-bound glycine dimer, in the region above 3100 cm (-1), the present spectrum agrees well with one recorded previously. The present work also reveals a weak, broad absorption spanning the region from 2650 to 3300 cm (-1). This feature is assigned to the strongly hydrogen-bonded and anharmonic N-H and O-H stretching modes. As well, the shared proton stretch is observed at 2440 cm (-1). The IRMPD spectra for the proton-bound glycine dimer confirms that the lowest energy structure is an ion-dipole complex between N-protonated glycine and the carboxyl group of the second glycine. This spectrum also helps to eliminate the existence of any of the higher-energy structures considered. The IRMPD spectrum for the sodium ion-bound dimer is a much simpler spectrum consisting of three bands assigned to the O-H stretch and the asymmetric and symmetric NH 2 stretching modes. The positions of these bands are very similar to those observed for the proton-bound glycine dimer. Numerous structures were considered and the experimental spectrum agrees with the B3LYP/6-31+G(d,p) predicted spectrum for the lowest energy structure, two bidentate glycine molecules bound to Na (+). Though some of the structures cannot be completely ruled out by comparing the experimental and theoretical spectra, they are energetically disfavored by at least 20 kJ mol (-1).  相似文献   

7.
Structural characterization of protonated gas-phase ions of cysteine and dopamine by infrared multiple photon dissociation (IRMPD) spectroscopy using a free electron laser in combination with theory based on DFT calculations reveals the presence of two types of protonated dimer ions in the electrospray mass spectra of the metabolites. In addition to the proton-bound dimer of each species, the covalently bound dimer of cysteine (bound by a disulfide linkage) has been identified. The dimer ion of m/z 241 observed in the electrospray mass spectra of cysteine has been identified as protonated cystine by comparison of the experimental IRMPD spectrum to the IR absorption spectra predicted by theory and the IRMPD spectrum of a standard. Formation of the protonated covalently bound disulfide-linked dimer ions (i.e. protonated cystine) from electrospray of cysteine solution is consistent with the redox properties of cysteine. Both the IRMPD spectra and theory indicate that in protonated cystine the covalent disulfide bond is retained and the proton is involved in intramolecular hydrogen bonding between the amine groups of the two cysteine amino acid units. For cysteine, the protonated covalently bound dimer (m/z 241) dominated the mass spectrum relative to the proton-bound dimer (m/z 243), but this was not the case for dopamine, where the protonated monomer and the proton-bound dimer were both observed as major ions. An extended conformation of the ethylammonium side chain of gas-phase protonated dopamine monomer was verified from the correlation between the predicted IR absorption spectra and the experimental IRMPD spectrum. Dopamine has the same extended ethylamine side chain conformation in the proton-bound dopamine dimer identified in the mass spectra of electrosprayed dopamine. The structure of the proton-bound dimer of dopamine is confirmed by calculations and the presence of an IR band due to the shared proton. The presence of the shared proton in the protonated cystine ion can be inferred from the IRMPD spectrum.
Figure
?  相似文献   

8.
A new modification of pulsed-ionization high-pressure mass spectrometry (PHPMS) has been used to perform equilibrium thermochemical studies for relatively nonvolatile biomolecules such as amino acids. Binding enthalpy and entropy changes have been measured for proton-bound clusters of glycine, which are in good agreement with both theoretical (DFT) results of this work and a previous blackbody infrared dissociation experiment. Experimental data indicate that a number of conformers of the proton-bound dimer of glycine may coexist in the explored temperature range (360-460 K). Several new, conceptually different isomers (two of them zwitterionic) have been found by DFT calculations, one of which is 7 kJ mol(-1) lower in energy than the structure previously reported to be the energy minimum.  相似文献   

9.
Primary and secondary amines, when examined in atmospheric pressure chemical ionization, electrospray ionization, or chemical ionization, display protonated imines in their mass spectra. These products arise formally by nucleophilic substitution at the α-carbon with loss of both ammonia and molecular hydrogen. Collision-induced dissociation (CID) is used to characterize the product ions by comparison with authentic protonated imines. Gas-phase ion/molecule reactions of protonated amines with neutral amines also yield products that correspond to protonated imines (deamination and dehydrogenation), as well as providing simple deamination products. The reaction mechanism was investigated further by reacting the deamination product, the alkyl cation, with a neutral amine. The observed dehydrogenation of the nascent protonated secondary amine indicates that the reaction sequence is loss of ammonia followed by dehydrogenation even though the isolated protonated secondary amines did not undergo dehydrogenation upon CID. Formation of the deamination products in the protonated amine/amine reaction is competitive with proton-bound dimer formation. The proton-bound dimers do not yield deamination products under CID conditions in the ion trap or in experiments performed using a pentaquadrupole instrument. This demonstrates that the geometry of the proton-bound dimer, in which the α-carbons of the alkylamines are well separated [C a -N-H-N-C a ], is an unsuitable entry point on the potential energy hypersurface for formation of the imine [C a -N-C a ]. Isolation of the proton-bound dimers in the quadrupole ion trap is achieved with low efficiency and this characteristic can be used to distinguish them from their covalently bound isomers.  相似文献   

10.
两种氨基酸中[MH-CO2H2]+的特征质谱碎裂   总被引:1,自引:0,他引:1  
运用低能碰撞诱导解离(CID)研究了电子轰击(EI)、快原子轰击(FAB)电离条件下质子化亮氨酸与异亮氨酸解离产生亚稳离子「MH-CO2H2」的单分子质谱破裂,二种异构体呈现出了各自不同的解离特征,根据CID的特征碎片离子和氘代同位素标记实验,提出了其破裂过程的存在离子/中性(碎片)复合物中间体机理,并对有关的特征离子的形成进行了讨论。  相似文献   

11.
Electronic structure calculations (CBS-QB3 and G3MP2) have been used to predict a suitable method to experimentally observe the anomalous structure which is predicted to exist in a proton-bound dimer with a high dipole moment monomer. The enthalpy associated with forming the proton-bound dimer from its protonated and neutral monomers is shown to be linearly related to the difference in proton affinities which has been observed experimentally. However, unlike previous experimental studies, the linear correlation is not predicted to depend strongly, if at all, on whether the basic sites are C=O, C=N, or O(H) n-donor bases. Thermochemical measurements, then, are probably not the best method to distinguish between the structures of heterogeneous proton-bound dimers. It has been shown that a suitable method to experimentally observe the anomalous structure of proton-bound dimers containing a high dipole moment monomer (or very polar monomer) is by spectroscopic measurement. The O-H+-O asymmetric stretch is probably not the best infrared band to try to correlate with structure. The best band to observe is one which is in a region of the spectrum not masked by other absorptions and is also sensitive to the proximity of the binding proton. For example, it is shown that the methanol-free O-H stretch is very sensitive to the O-H+ bond distance for a series of heterogeneous proton-bound dimers containing methanol. It is predicted that the free O-H stretch of the methanol/acetonitrile proton-bound dimer is more closely related to the O-H stretch in protonated methanol than the O-H stretch in neutral methanol. Observations of these bands should confirm that the proton is closer to methanol in the methanol/acetonitrile proton-bound dimer despite acetonitrile having a higher proton affinity.  相似文献   

12.
A series of ester enolates was investigated by the technique of collision-induced dissociation (CID) using a Fourier transform mass spectrometer. Two primary modes of fragmentation were observed which led to CID products characteristic of the acyl and alkoxyl moieties of the ester enolates. An investigation of the fragmentation mechanism revealed that the primary fragmentation mode appears to be a sensitive function of the structure and the proton affinities of the two possible product ions. In most cases the anion (ketenyl or alkoxide) with the lower proton affinity was observed as the threshold product, suggestive of a proton-bound dimer intermediate. Interesting secondary dissociations were observed to occur from the primary product ions, as alkoxide ions fragmented to enolate ions or other stabilized anions.  相似文献   

13.
The formation and dissociation of dimer complexes consisting of a transition metal ion and two polyether ligands is examined in a quadrupole ion trap mass spectrometer. Reactions of three transition metals (Ni, Cu, Co) with three crown ethers and four acyclic ethers (glymes) are studied. Singly charged species are created from ion-molecule reactions between laser-desorbed monopositive metal ions and the neutral polyethers. Doubly charged complexes are generated from electrospray ionization of solutions containing metal salts and polyethers. For the singly charged complexes, the capability for dimer formation by the ethers is dependent on the number of available coordination sites on the ligand and its ability to fully coordinate the metal ion. For example, 18-crown-6 never forms dimer complexes, but 12-crown-4 readily forms dimers. For the more flexible acyclic ethers, the ligands that have four or more oxygen atoms do not form dimer complexes because the acyclic ligands have sufficient flexibility to wrap around the metal ion and prevent attachment of a second ligand. For the doubly charged complexes, dimers are observed for all of the crown ethers and glymes, thus showing no dependence on the flexibility or number of coordination sites of the polyether. The nonselectivity of dimer formation is attributed to the higher charge density of the doubly charged metal center, resulting in stronger coordination abilities. Collisionally activated dissociation is used to evaluate the structures of the metal-polyether dimer complexes. Radical fragmentation processes are observed for some of the singly charged dimer complexes because these pathways allow the monopositive metal ion to attain a more favorable 2 + oxidation state. These radical losses are observed for the dimer complexes but not for the monomer complexes because the dimer structures have two independent ligands, a feature that enhances the coordination geometry of the complex and allows more flexibility for the rearrangements necessary for loss of radical species. Dissociation of the doubly charged complexes generated by electrospray ionization does not result in losses of radical neutrals because the metal ions already exist in favorable 2+ oxidation states.  相似文献   

14.
Infrared multiphoton dissociation spectra of three homogeneous and two heterogeneous proton-bound dimers were recorded in the gas phase. Comparison of the experimental infrared spectra recorded in the fingerprint region of the proton-bound dimers with spectra predicted by electronic structure calculations shows that all modes which are observed contain motion of the proton oscillating between the two monomers. The O-H-O asymmetric stretch for the homogeneous dimers is shown to occur at around 800 cm-1. As expected, the O-H-O asymmetric stretching modes for the heterogeneous proton-bound dimers are observed to shift to significantly higher energy with respect to those for the homogeneous proton-bound dimers due to the asymmetry of the O-H-O moeity. This shift is shown to be predictable from the difference in proton affinities between the two monomers. Density functional predictions of the infrared spectra based on the harmonic oscillator model are demonstrated to predict the observed spectra of the homogeneous proton-bound dimers with reasonable accuracy. Calculations of the structure and infrared spectrum of protonated diglyme at the B3LYP/6-31+G** level and basis also agree well with an infrared spectrum recorded previously. For both heterogeneous proton-bound dimers, however, the predicted spectra are blue-shifted with respect to experiment.  相似文献   

15.
Ionic hydrogen-bonding interactions have been found in several clusters formed by 5-fluorocytosine (5-FC). The chloride and trimethylammonium cluster ions, along with the cationic (proton-bound) dimer have been characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy and electronic structure calculations performed at the B2PLYP/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. IRMPD action spectra, in combination with calculated spectra and relative energetics, indicate that it is most probable that predominantly a single isomer exists in each experiment. For the 5-FC-trimethylammonium cluster specifically, the calculated spectrum of the lowest-energy isomer convincingly matches the experimental spectrum. Interestingly, the cationic dimer of 5-FC was found to have a single energetically relevant isomer (Cationic-IV) involving a tridentate ionic hydrogen-bonding interaction. The three sites of intermolecular ionic hydrogen bonds in this isomer interact very efficiently, leading to a significant calculated binding energy of 180 kJ/mol. The magnitude of the calculated binding energy for this species, in combination with the strong correlation between the simulated and IRMPD spectra, suggests that a tridentate-proton-bound dimer was observed predominantly in the experiments. Comparison of the calculated relative Gibbs free energies (298 K) for this species and several of the other isomers considered also supports the likelihood of the dominant protonated dimer existing as Cationic-IV.  相似文献   

16.
运用低能碰撞诱导解离(CID)研究了电子轰击(EI)、快原子轰击(FAB)电离条件下质子化亮氨酸与异亮氨酸解高产生亚稳离子[MH-CO2H2]+的单分子质谱碎裂,二种异构体呈现出了各自不同的解离特征,根据CID的特征碎片离子和氘代同位素标记实验,提出了其碎裂过程存在离子/中性(碎片)复合物中间体碎裂机理,并对有关的特征离子的形成进行了讨论.  相似文献   

17.
The structure of the proton-bound lysine dimer has been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. The structures of different possible isomers of the proton-bound lysine dimer have been optimized at the B3LYP/6-31 + G(d) level of theory and IR spectra calculated using the same computational method. Based on relative Gibbs free energies (298 K) calculated at the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d) level of theory, LL-CS01, and followed closely (1.1 kJ mol–1) by LL-CS02 are the most stable non-zwitterionic isomers. At the MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + (d,p) levels of theory, isomer LL-CS02 is favored by 3.0 and 2.3 kJ mol–1, respectively. The relative Gibbs free energies calculated by the aforementioned levels of theory for LL-CS01 and LL-CS02 are very close and strongly suggest that diagnostic vibrational signatures found in the IRMPD spectrum of the proton-bound dimer of lysine can be attributed to the existence of both isomers. LL-ZW01 is the most stable zwitterionic isomer, in which the zwitterionic structure of the neutral lysine is well stabilized by the protonated lysine moiety via a very strong intermolecular hydrogen bond. At the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d), MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + G(d,p) levels of theory, the most stable zwitterionic isomer (LL-ZW01) is less favored than LL-CS01 by 7.3, 4.1 and 2.3 kJ mol–1, respectively. The experimental IRMPD spectrum also confirms that the proton-bound dimer of lysine largely exists as charge-solvated isomers. Investigation of zwitterionic and charge-solvated species of amino acids in the gas phase will aid in a further understanding of structure, property, and function of biological molecules.  相似文献   

18.
The gas-phase ion-molecule reactions of 1,1,3,3-tetrafluorodimethyl ether and water have been examined using Fourier transform ion cyclotron resonance mass spectrometry, infrared multiphoton dissociation (IRMPD) spectroscopy, and ab initio molecular orbital calculations. This reaction sequence leads to the efficient bimolecular production of the proton-bound dimer of water (H5O2+). Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield-protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate that decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). Last, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition state, and product species was obtained using MP2(full)/6-311+G**//6-31G* level of theory.  相似文献   

19.
A number of calculated structures of heterogeneous proton-bound dimers containing monomers such as acetonitrile, cyanamide, vinylene carbonate, and propiolactone, which have high dipole moments, are presented. These proton-bound dimers are predicted to have a structural anomaly pertaining to the bond distances between the central proton and the basic sites on each of the monomers. The monomers with the high dipole moments also have the larger proton affinity and, on the basis of difference in proton affinities, it would be expected that the proton would be closer to this monomer than the one with the lower proton affinity. However, the proton is found to lie substantially closer to the monomer with the lower proton affinity in most cases, unless the difference in proton affinity is too large. Simply stated, the difference in proton affinities is smaller than the difference in the affinity to form an ion-dipole complex for the two monomers and it is the larger affinity for the high dipole moment monomer (which also has the higher proton affinity) to form an ion-dipole complex that is responsible for the proton lying closer to the low proton affinity monomer. The bond distances between the central proton and the monomers are found to be related to the difference in proton affinity. It is found, though, that the proton-bound dimers can be grouped into two separate groups, one where the proton-bound dimer contains a high dipole moment monomer and one group where the proton-bound dimer does not contain a high dipole moment monomer. From these plots it has been determined that a high dipole moment monomer is one that has a dipole moment greater than 2.9 D.  相似文献   

20.
The hydration of cucurbit[6]uril (CB[6]) in the gas phase is investigated using electrospray ionization traveling wave ion mobility mass spectrometry (ESI-TWIM-MS). Highly abundant dihydrated and tetrahydrated species of diprotonated CB[6] are found in the ESI-TWIM-MS spectrum. The hydration patterns of the CB[6] ion and the dissociation patterns of the hydrated CB[6] ion indicate that two water molecules are bound to each other, forming a water dimer in the CB[6] complex. Ion mobility studies combined with the structures calculated by density functional theory suggest that the proton-bound water dimer is present as a Zundel-like structure in the CB[6] portal, forming a hydrogen bond network with carbonyl groups of the CB[6]. When a large guest molecule is bound to a CB[6] portal, water molecules cannot bind to the portal. In addition, the strong binding energy of the water dimer blocks the portal, hindering the insertion of the long alkyl chain of the guest molecule into the CB[6] cavity. With small alkali metal cations, such as Li+ and Na+, a single water molecule interacts with the CB[6] portal, forming hydrogen bonds with the carbonyl groups of CB[6]. A highly stable Zundel-like structure of the proton-bound water dimer or a metal-bound water molecule at the CB[6] portal is suggested as an initial hydration process for CB[6], which is only dissolved in aqueous solution with acid or alkali metal ions.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号