首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以二维方腔顶盖驱动流为模型,将多重网格方法和SIMPLER算法进行耦合,对不同雷诺数下多重网格加速SIMPLER算法和SIMPLER算法的计算效率进行了对比,数值计算表明:多重网格加速SIMPLER算法不仅能够解决SIMPLER算法不能准确模拟较高雷诺数流场的问题,而且其计算效率远远高于SIMPLER算法.本文也对松弛因子的选取、多重网格实现形式以及网格层数对多重网格加速SIMPLER算法的影响进行了研究,从而为多重网格加速SIMPLER算法的实施提供了计算技术.  相似文献   

2.
In this paper the generation of general curvilinear co-ordinate systems for use in selected two-dimensional fluid flow problems is presented. The curvilinear co-ordinate systems are obtained from the numerical solution of a system of Poisson equations. The computational grids obtained by this technique allow for curved grid lines such that the boundary of the solution domain coincides with a grid line. Hence, these meshes are called boundary fitted grids (BFG). The physical solution area is mapped onto a set of connected rectangles in the transformed (computational) plane which form a composite mesh. All numerical calculations are performed in the transformed plane. Since the computational domain is a rectangle and a uniform grid with mesh spacings Δξ = Δη = 1 (in two-dimensions) is used, the computer programming is substantially facilitated. By means of control functions, which form the r.h.s. of the Poisson equations, the clustering of grid lines or grid points is governed. This allows a very fine resolution at certain specified locations and includes adaptive grid generation. The first two sections outline the general features of BFGs, and in section 3 the general transformation rules along with the necessary concepts of differential geometry are given. In section 4 the transformed grid generation equations are derived and control functions are specified. Expressions for grid adaptation arc also presented. Section 5 briefly discusses the numerical solution of the transformed grid generation equations using sucessive overrelaxation and shows a sample calculation where the FAS (full approximation scheme) multigrid technique was employed. In the companion paper (Part II), the application of the BFG method to selected fluid flow problems is addressed.  相似文献   

3.
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.  相似文献   

4.
A numerical method for the efficient calculation of three‐dimensional incompressible turbulent flow in curvilinear co‐ordinates is presented. The mathematical model consists of the Reynolds averaged Navier–Stokes equations and the k–ε turbulence model. The numerical method is based on the SIMPLE pressure‐correction algorithm with finite volume discretization in curvilinear co‐ordinates. To accelerate the convergence of the solution method a full approximation scheme‐full multigrid (FAS‐FMG) method is utilized. The solution of the k–ε transport equations is embedded in the multigrid iteration. The improved convergence characteristic of the multigrid method is demonstrated by means of several calculations of three‐dimensional flow cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The development of a multigrid solution algorithm for the computation of three-dimensional laminar fully-elliptic incompressible flows is presented. The procedure utilizes a non-orthogonal collocated arrangement of the primitive variables in generalized curvilinear co-ordinates. The momentum and continuity equations are solved in a decoupled manner and a pressure-correction equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. The convergence of the numerical solution is accelerated by the use of a Full Approximation Storage (FAS) multigrid technique. Numerical computations of the laminar flow in a 90° strongly curved pipe are performed for several finite-volume grids and Reynolds numbers to demonstrate the efficiency of the present numerical scheme. The rates of convergence, computational times, and multigrid performance indicators are reported for each case. Despite the additional computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence of the present algorithm is shown to result in significantly reduced overall CPU times.  相似文献   

6.
A method of efficiently computing turbulent compressible flow over complex two-dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of the flow field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady state is achieved using an unstructured multigrid algorithm. Turbulence modelling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element aerofoil geometries are computed and compared with experimental data.  相似文献   

7.
发展了一种基于高精度和高效格式计算悬停旋翼复杂绕流的隐式有限体积方法。控制方程为Euler方程,其中对流项通量的左右状态量采用五阶加权基本无振荡(WENO)格式重构,时间推进应用隐式LU-SGS算法,为进一步加速收敛,采用三层V循环多重网格松弛方法。考虑到多重网格方法的思想以及五阶WENO格式涉及6个网格单元,建议仅在最细网格上使用WENO格式。计算结果表明本文方法能有效捕捉激波,对尾迹也有较高分辨率,基于隐式LU-SGS算法的多重网格方法能有效提高计算效率。  相似文献   

8.
In this paper a parallel multigrid finite volume solver for the prediction of steady and unsteady flows in complex geometries is presented. For the handling of the complexity of the geometry and for the parallelization a unified approach connected with the concept of block-structured grids is employed. The parallel implementation is based on grid partitioning with automatic load balancing and follows the message-passing concept, ensuring a high degree of portability. A high numerical efficiency is obtained by a non-linear multigrid method with a pressure correction scheme as smoother. By a number of numerical experiments on various parallel computers the method is investigated with respect to its numerical and parallel efficiency. The results illustrate that the high performance of the underlying sequential multigrid algorithm can largely be retained in the parallel implementation and that the proposed method is well suited for solving complex flow problems on parallel computers with high efficiency.  相似文献   

9.
The steady, incompressible Navier–Stokes (N–S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations. A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.  相似文献   

10.
In this paper we discuss numerical simulation techniques using a finite element approach in combination with the fictitious boundary method (FBM) for rigid particulate flow configurations in 3D. The flow is computed with a multigrid finite element solver (FEATFLOW), the solid particles are allowed to move freely through the computational mesh which can be static or adaptively aligned by a grid deformation method allowing structured as well as unstructured meshes. We explain the details of how we can use the FBM to simulate flows with complex geometries that are hard to describe analytically. Stationary and time‐dependent numerical examples, demonstrating the use of such geometries are provided. Our numerical results include well‐known benchmark configurations showing that the method can accurately and efficiently handle prototypical particulate flow situations in 3D with particles of different shape and size. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
为提高流场与声场信息传递效率,建立了一种耦合MPI并行策略与改进距离减缩法的搜索算法。在完成点搜索后,采用一种适合于结构和非结构网格的形函数插值算法进行流场插值,实现了流场信息从流场网格到声场网格的快速传递。针对网格点搜索算法效率的验证,选用二维30P30N三段翼为研究对象,在不同的子进程数下进行对比分析。结果表明,相对于传统的距离减缩算法,本文提出的改进算法能有效提高CAA网格点的搜索效率,并且效率随着子进程数的增加而提高。在此基础上,将建立的流场与声场信息传递技术模块应用于CAA方法中,并对二维NACA0012翼型的后缘噪声问题进行计算分析,计算结果反映基于流场与声场信息快速传递算法的CAA方法能有效模拟宽频气动噪声问题。  相似文献   

12.
In this paper, a high-order compact finite difference algorithm is established for the stream function-velocity formulation of the two-dimensional steady incompressible Navier-Stokes equations in general curvilinear coordinates. Different from the previous work, not only the stream function and its first-order partial derivatives but also the second-order mixed partial derivative is treated as unknown variable in this work. Numerical examples, including a test problem with an analytical solution, three types of lid-driven cavity flow problems with unusual shapes and steady flow past a circular cylinder as well as an elliptic cylinder with angle of attack, are solved numerically by the newly proposed scheme. For two types of the lid-driven trapezoidal cavity flow, we provide the detailed data using the fine grid sizes, which can be considered the benchmark solutions. The results obtained prove that the present numerical method has the ability to solve the incompressible flow for complex geometry in engineering applications, especially by using a nonorthogonal coordinate transformation, with high accuracy.  相似文献   

13.
An adaptive grid solution procedure is developed for incompressible flow problems in which grid refinement based on an equidistribution law is performed in high-error-estimate regions that are flagged from a preliminary coarse grid solution. Solutions on the locally refined and equidistributed meshes are obtained using boundary conditions interpolated from the preliminary coarse grid solution, and solutions on both the refined and coarse grid regions are successively improved using a multigrid approach. For this purpose, suitable correction terms for the coarse grid equations are derived for all variables in the flagged regions. This procedure with Local Adaptation, Multigridding and Equidistribution (LAME) concepts is applied to various flow problems to demonstrate the accuracy improvements obtained using this method.  相似文献   

14.
The solution of the incompressible Navier-Stokes equations in general two- and three-dimensional domains using a multigrid method is considered. Because a great variety of boundary-fitted grids may occur, robustness is at a premium. Therefore a new ILU smoother called CILU (collective ILU) is described, based on r-transformations. In CILU the matrix that is factorized is block-structured, with blocks corresponding to the set of physical variables. A multigrid algorithm using CILU as smoother is investigated. The performance of the algorithm in two and three dimensions is assessed by numerical experments. The results show that CILU is a good smoother for the incompressible Navier-Stokes equations discretized on general non-orthogonal curvilinear grids.  相似文献   

15.
The multigrid method is one of the most efficient techniques for convergence acceleration of iterative methods. In this method, a grid coarsening algorithm is required. Here, an agglomeration scheme is introduced, which is applicable in both cell‐center and cell‐vertex 2 and 3D discretizations. A new implicit formulation is presented, which results in better computation efficiency, when added to the multigrid scheme. A few simple procedures are also proposed and applied to provide even higher convergence acceleration. The Euler equations are solved on an unstructured grid around standard transonic configurations to validate the algorithm and to assess its superiority to conventional explicit agglomeration schemes. The scheme is applied to 2 and 3D test cases using both cell‐center and cell‐vertex discretizations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes a versatile finite difference scheme for the solution of the two-dimensional shallow water equations on boundary-fitted non-orthogonal curvilinear meshes. It is believed that this is the first non-orthogonal shallow water equation model incorporating the advective acceleration terms to have been developed in the United Kingdom. The numerical scheme has been validated against the severe condition of jet-forced flow in a circular reservoir with vertical side walls, where reflections of the initial free surface waves pose major problems in achieving a stable solution. Furthermore, the validation exercises are designed to test the computer model for artificial diffusion, which may be a consequence of the numerical scheme adopted to stabilize the shallow water equations. The model is shown to be capable of simulating the flow conditions in an irregularly shaped domain typical of the geometries frequently encountered in civil engineering river basin management.  相似文献   

17.
A compact, finite volume, time-marching scheme for the two-dimensional Navier-Stokes equations of viscous fluid flow is presented. The scheme is designed for unstructured (locally refined) quadrilateral meshes. An earlier inviscid equation (Euler) scheme is employed for the convective terms and the emphasis is on treatment of the viscous terms. An essential feature of the algorithm is that all necessary operations are restricted to within each cell, which is very important when dealing with unstructured grids. Numerical issues which have to be addressed when developing a Navier-Stokes scheme are investigated. These issues are not limited to the particular Navier-Stokes scheme developed in the present work but are general problems. Specifically, the extent of the numerical molecule, which is related to the compactness of the scheme and to its suitability for unstructured grids, is examined. An approach which considers suppression of odd-even mode decoupling of the solution when designing a scheme is presented. In addition, accuracy issues related to grid stretching as well as boundary layer solution contamination due to artificial dissipation are addressed. Although the above issues are investigated with respect to the specific scheme presented, the conclusions are valid for an entire class of finite volume algorithms. The Navier-Stokes solver is validated through test cases which involve comparisons with analytical, numerical and experimental results. The solver is coupled to an adaptive algorithm for high-Reynolds-number aerofoil flow computations.  相似文献   

18.
The efficient symmetric Gauss-Seidel (SGS) algorithm for solving the Euler equations of inviscid, compressible flow on structured grids, developed in collaboration with Jameson of Stanford University, is extended to unstructured grids. The algorithm uses a nonlinear formulation of an SGS solver, implemented within the framework of multigrid. The earlier form of the algorithm used the natural (lexicographic) ordering of the mesh cells available on structured grids for the SGS sweeps, but a number of features of the method that are believed to contribute to its success can also be implemented for computations on unstructured grids. The present paper reviews, the features of the SGS multigrid solver for structured gr0ids, including its nonlinear implementation, its use of “absolute” Jacobian matrix preconditioning, and its incorporation of multigrid, and then describes the incorporation of these features into an algorithm suitable for computations on unstructured grids. The implementation on unstructured grids is based on the agglomerated multigrid method developed by Sørensen, which uses an explicit Runge-Kutta smoothing algorithm. Results of computations for steady, transonic flows past two-dimensional airfoils are presented, and the efficiency of the method is evaluated for computations on both structured and unstructured meshes.  相似文献   

19.
王刚  干源  任炯 《力学学报》2022,54(12):3418-3429
Walsh函数有限体积法(FVM-WBF)是一种能够在网格内部捕捉间断的新型数值方法. 持续增加Walsh基函数数目能够稳步提高FVM-WBF方法的求解分辨率, 但计算量暴发式增长和收敛速度下降的问题也会同步出现. 针对Walsh基函数数目增加而引起的计算效率问题, 本文分析了Walsh基函数及其系数所能影响的网格单元局部均值区域尺度, 发现其中隐含类似多重网格的尺度特征, 据此提出一种结合多重网格策略的FVM-WBF方法. 在定常流场计算中根据各级Walsh基函数影响尺度的不同, 对每级Walsh基函数设置满足其稳定性约束的时间步长, 在时间推进求解的过程中快速消除不同波长的数值误差, 实现多重网格的加速收敛效果. 选取NACA0012翼型和二维圆柱的定常无黏绕流问题作为算例, 对引入多重网格策略的FVM-WBF方法和不考虑多重网格策略的FVM-WBF方法进行对比测试. 数值结果证实: 新发展的FVM-WBF方法具备多重网格的关键特征, 在不增加任何特殊处理和计算量的情况下, 只需通过时间步长的调整, 就能够达到多重网格的加速效果, 显著提升计算效率.   相似文献   

20.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号