首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The thermal decomposition of cyanogen azide (NCN3) and the subsequent collision‐induced intersystem crossing (CIISC) process of cyanonitrene (NCN) have been investigated by monitoring excited electronic state 1NCN and ground state 3NCN radicals. NCN was generated by the pyrolysis of NCN3 behind shock waves and by the photolysis of NCN3 at room temperature. Falloff rate constants of the thermal unimolecular decomposition of NCN3 in argon have been extracted from 1NCN concentration–time profiles in the temperature range 617 K <T< 927 K and at two different total densities: k(ρ ≈ 3 × 10?6 mol/cm3)/s?1=4.9 × 109 × exp (?71±14 kJ mol?1/RT) (± 30%); k(ρ ≈ 6 × 10?6 mol/cm3)/s?1=7.5 × 109 × exp (‐71±14 kJ mol?1/RT) (± 30%). In addition, high‐temperature 1NCN absorption cross sections have been determined in the temperature range 618 K <T< 1231 K and can be expressed by σ /(cm2/mol)= 1.0 × 108 ?6.3 × 104 K?1 × T (± 50%). Rate constants for the CIISC process have been measured by monitoring 3NCN in the temperature range 701 K <T< 1256 K resulting in kCIISC (ρ ≈ 1.8 ×10?6 mol/cm3)/ s?1=2.6 × 106× exp (‐36±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 3.5×10?6 mol/cm3)/ s?1 = 2.0 × 106 × exp (?31±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 7.0×10?6 mol/cm3)/ s?1=1.4 × 106 × exp (?25±10 kJ mol?1/RT) (± 20%). These values are in good agreement with CIISC rate constants extracted from corresponding 1NCN measurements. The observed nonlinear pressure dependences reveal a pressure saturation effect of the CIISC process. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 30–40, 2013  相似文献   

2.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

3.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

4.
The polymerization of vinyl acetate in N,N-dimethylformamide (DMF) at 60°C initiated by AIBN in the presence of [Fe(DMF)6](ClO4)3 and Fe(N3)3 had been studied. Fe(N3)3 was produced in situ by mixing solid sodium azide (NaN3) and hexakis(N,N-dimethylformamide) iron (III) perchlorate, [Fe(DMF)6](ClO4)3, in the ratio of 3:1. The velocity constant kx for the interaction of poly(vinyl acetate) radical with [Fe(DMF)6]3+ was found to be 1.44 × 103L mol?1 s?1 and that for the interaction of poly(vinyl acetate) radical with Fe(N3)3 to be 3.44 × 105 L mol?1 s?1 at 60°C.  相似文献   

5.
Benzyl chloride and benzyl acetate were photolyzed in 30% methanol–water mixtures (V/V) at 0°C. The photolysis produces benzyl carbocations that react with nucleophiles. The reaction products were analyzed by gas chromatography or liquid chromatography. From the amounts of products the relative values of rate constants of reactions of benzyl carbocation with nucleophiles N and water k(N)/k(H2O) were calculated. Benzyl carbocation reacts with I?, Br?, Cl?, and Ac? ions with approximately diffusion-controlled rate. A value of 2.4 × 107 dm3 mol?1 s?1 for the rate constant k(H2O) and a lifetime of 0.7 ns were estimated for benzyl carbocation in the aqueous solution.  相似文献   

6.
L-脯氨酸独有的亚胺基使其在生物医药领域具有许多独特的功能,并广泛用作不对称有机化合物合成的有效催化剂。本文在碱性介质中研究了二(氢过碘酸)合银(III)配离子氧化 L-脯氨酸的反应。经质谱鉴定,脯氨酸氧化后的产物为脯氨酸脱羧生成的 γ-氨基丁酸盐;氧化反应对脯氨酸及Ag(III) 均为一级;二级速率常数 k′ 随 [IO4-] 浓度增加而减小,而与 [OHˉ] 的浓度几乎无关;推测反应机理应包括 [Ag(HIO6)2]5-与 [Ag(HIO6)(H2O)(OH)]2-之间的前期平衡,两种Ag(III)配离子均作为反应的活性组分,在速控步被完全去质子化的脯氨酸平行地还原,两速控步对应的活化参数为: k1 (25 oC)=1.87±0.04(mol·L-1)-1s-1,∆ H1=45±4 kJ · mol-1, ∆ S1=-90±13 J· K-1·mol-1 and k2 (25 oC) =3.2±0.5(mol·L-1)-1s-1, ∆ H2=34±2 kJ · mol-1, ∆ S2=-122 ±10 J· K-1·mol-1。本文第一次发现 [Ag(HIO6)2]5-配离子也具有氧化反应活性。  相似文献   

7.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(21) 5559 . The initiator efficiency, f, of 2,2′‐azobis(isobutyronitrile) (AIBN) in dodecyl acrylate (DA) bulk free‐radical polymerizations has been determined over a wide range of monomer conversion in high‐molecular‐weight regimes (Mn ? 106 g mol?1 [? 4160 units of DA)] with time‐dependent conversion data obtained via online Fourier transform near infrared spectroscopy (FTNIR) at 60 °C. In addition, the required initiator decomposition rate coefficient, kd, was determined via online UV spectrometry and was found to be 8.4 · 10?6 s?1 (±0.5 · 10?6 s?1) in dodecane, n‐butyl acetate, and n‐dodecyl acetate at 60 °C. The initiator efficiency at low monomer conversions is relatively low (f = 0.13) and decreases with increasing monomer to polymer conversions. The evolution of f with monomer conversion (in high‐molecular‐weight regimes), x, at 60 °C can be summarized by the following functionality: f60 °C (x) = 0.13–0.22 · x + 0.25 · x2 (for x ≤ 0.45). The reported efficiency data are believed to have an error of >50%. The ratio of the initiator efficiency and the average termination rate coefficient, 〈kt±, (f/〈kt〉) has been determined at various molecular weights for the generated polydodecyl acrylate (Mn = 1900 g mol?1 (? 8 units of DA) up to Mn = 36,500 g mol?1 (? 152 units of DA). The (f/〈kt〉) data may be indicative of a chain length‐dependent termination rate coefficient decreasing with (average) chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5170–5179, 2004  相似文献   

8.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

9.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

10.
Rate constants for the hydrolysis (kh) of six different amines in trans‐[Co((BA)2en)(amine)2]ClO4 complexes (amine = aniline 1a , para‐toluidine 1b , benzylamine 1c (primary amines), pyrrolidine 2a , piperidine 2b , morpholine 2c (secondary amines), and (BA)2en = Bisbenzoylacetoneethylenediiminato) in mixed methanol/water (1:1) solvent have been determined between 30 and 55°C. The hydrolysis product of 2c , trans‐[Co((BA)2en)(morpholine)(H2O)]ClO4, has been separately prepared and characterized by UV–vis and 1H NMR spectroscopy. Depending on the nature of the axial amine ligand the limiting first‐order rate constants for the amine hydrolysis at 40°C range from (3.42 ± 0.10) × 10?5 to (5.32 ± 0.13) × 10?5 s?1. At the first glance, a reasonable trend cannot be established between kh and the basicity or the inductive trans effect of the amine ligands. However, when the complexes are classified into two groups, based on the type of the amine (primary and secondary), the values of kh correlate well with the basicity or inductive effect of the amine in each group. The observed trend in kh values for the complexes with primary amines is 1a (5.32 ± 0.13) × 10?5 s?1 > 1b (3.51 ± 0.14) × 10?5 > 1c (1.72 ± 0.03) × 10?5 (40°C), which is opposite to the amine basicity strength. In the case of the complexes with secondary amines, the observed trend in kh values is in accord with amine basicity (or inductive trans effect), i.e. 2a (5.02 ± 0.22) × 10?5 > 2b (4.18 ± 0.10) × 10?5 > 2c (3.42 ± 0.10) × 10?5 s?1 (40°C). © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 387–393, 2002  相似文献   

11.
Thermal decomposition of cyclopentadiene to c‐C5H5 (cyclopentadienyl radical) + H (1) and the reverse bimolecular reaction (?1) are studied quantum‐chemically at the G2M level of theory. The dissociation pathway has been mapped out following the minimum energy path on the potential energy surface (PES) calculated by the density functional UB3LYP/6‐311G(d,p) method. Using isodesmic reaction analysis, the standard enthalpy of formation for c‐C5H5 is found to be 62.5 ± 1.3 kcal mol?1, and the c‐C5H5? H bond dissociation energy is estimated as D°298(c‐C5H5? H) = 82.5 ± 0.9 kcal mol?1, in excellent agreement with the recent experimental values. Variational rate constants are computed on the basis of a scaled UB3LYP dissociation potential that fits the isodesmic/experimental enthalpy of Reaction (1). At the high pressure limit, k1 = 1.55 × 1018 T?0.8 exp(?42300/T) s?1 and k?1 = 2.67 × 1014 exp(?245/T) cm3 mol?1 s?1. The fall‐off effects are evaluated by a weak collision master equation/RRKM analysis. Calculated T, P‐dependent rate constants are in very good agreement with the most reliable experimental measurements. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 139–151 2004  相似文献   

12.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

13.
The thermal decomposition of CCl3O2NO2,CCl2FO2NO2, and CClF2O2NO2 was studied in a temperature-controlled 420 l reaction chamber using in situ detection of peroxynitrates by long-path IR absorption. The temperature dependence of the unimolecular dissociation rate constants was determined at total pressures of 10 and 800 mbar in nitrogen as buffer gas, and the pressure dependence was measured at 273 K between 10 and 800 mbar. In Troe's notation, the data are represented by the following values for the limiting low and high pressure rate constants k0/[N2] and k and the fall-off curvature parameter Fc (in units of cm3 molecule?1 s?1, s?1): CCl3O2NO2,k0/[N2] = 6.3 × 10?3 exp(?85.1 kJ · mol?1/RT), k = 4.8 × 1016 exp(?98.3 kJ · mol?1/RT), Fc = 0.22; CCl2FO2NO2, k0/[N2] = 1.01× 10?2 exp(?90.3 kJ · mol?1/RT), k = 6.6 × 1016 exp(?101.8 kJ · mol?1/RT), Fc = 0.28; and CClF2O2NO2, k0/[N2] = 1.80 × 10?3 exp(?87.3 kJ · mol?1/RT), k = 1.60 × 1016exp(?99.7 kJ · mol?1/RT), Fc = 0.30. From these dissociation rate constants and recently measured rate constants for the reverse reaction (see Caralp, Lesclaux, Rayez, Rayez, and Forst [19]), bond energies (=ΔH) of 100, 103, and 104 kJ/mol were derived for the RO2–NO2 bonds in CCl3O2NO2, CCl2FO2NO2, and CClF2O2NO2, respectively. The kinetic and thermochemical parameters of these decomposition reactions are compared with those of the dissociation of other peroxynitrates. Atmospheric implications of the thermal stability of chlorofluoromethyl peroxynitrates are briefly discussed.  相似文献   

14.
The reaction of NO with O2 has been investigated in aqueous solution. As demonstrated by ion chromatography, the sole product is NO2?. Kinetic studies of the reaction by stopped-flow methods with absorbance and conductivity detection are in agreement that the rate law is -d[O2]/dt=k[NO]2[O2] with k = 2.1 × 106 M?2 s?1 at 25°C. This rate law is unaffected by pH over the range from pH 1 to 13, and it holds with either NO or O2 in excess. By studying the reaction over the temperature range from 10 to 40°C, the following activation parameters were obtained: ΔH = 4.6 ± 2.1 kJ mol?1 and ΔS=?96 plusmn; 4 J K?1 mol?1. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The elimination kinetics of the title compounds were carried out in a static system over the temperature range of 290–330°C and pressure range of 29.5–124 torr. The reactions, carried out in seasoned vessels with allyl bromide, obey first-order rate law, are homogeneous and unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-buten-1-methanesulphonate, log k1(s?1) = (12.95 ± 0.53) ? (175.3 ± 5.9)kJ mol?1(2.303RT)?1; and for 3-methyl-3-buten-1-methanesulphonate, log k1(s?1) = (12.98 ± 0.40) ? (174.7 ± 4.5)kJ mol?1(2.303RT)?1. The olefinic double bond appears to assist in the rate of pyrolysis. The mechanism is described in terms of an intimate ion-pair intermediate. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl + CH2F2) = 1.19 × 10?17 T2 exp(?1023/T) cm3 molecule?1 s?1 (253–553 K), k(Cl + CH3CCl3) = 2.41 × 10?12 exp(?1630/T) cm3 molecule?1 s?1 (253–313 K), and k(Cl + CF3CFH2) = 1.27 × 10?12 exp(?2019/T) cm3 molecule?1 s?1 (253–313 K). Results are discussed with respect to the literature data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 401–406, 2009  相似文献   

17.
The polymerization of vinyl acetate initiated by β-picolinium-p-chlorophenacylide was carried out at 30, 35, and 40°C, using the conventional dilatometric technique. The initiator and the monomer exponent values were 0.80 ± 0.15 and unity, respectively. The polymerization was inhibited in the presence of hydroquinone, but was favored by nonpolar solvent and polymerization temperature. The energy of activation was 90.3 kJ mol?1. An average value of k/kt for the present system was found to be 0.37 × 10?2 L mol?1 s?1. The results are explained in terms of radical mode of polymerization with degradative initiator transfer; the principal mode of termination, however, was biomolecular.  相似文献   

18.
The rate coefficients for the gas-phase pyrolyses of a series of structurally related secondary acetates have been measured in a static system over the temperature range of 289.1–359.5°C and the pressure range 50.0–203.0 torr. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-hexyl acetate, log k1 (s?) = (12.12 ± 0.33) ? (176.1 ± 3.9)kJ/mol/2.203RT; for 5-methyl-3-hexyl acetate, log k1 (s?) = (13.17 ± 0.20) ? (186.2 ± 2.3)kJ/mol/2.303RT; and for 5,5-dimethyl-3-hexyl acetate, log k1 (s?) = (12.70 ± 0.19) ? (177.4 ± 2.2)kJ/mol/2.303RT. The direction of elimination of these esters has shown from the invariability of olefin distributions at different temperatures and percentages of decomposition that steric hindrance is a determining factor in the eclipsed cis conformation. Moreover, a more detailed analysis indicates that the greater the alkyl–alkyl interaction, the less favored the elimination tends to be. Otherwise, an increase of alkyl–hydrogen interaction caused steric acceleration to be the determining factor.  相似文献   

19.
We have conducted flow reactor experiments for NO formation from N2/O2 mixtures at high temperatures and atmospheric pressure, controlling accurately temperature and reaction time. Under these conditions, atomic oxygen equilibrates rapidly with O2. The experimental results were interpreted by a detailed chemical model to determine the rate constant for the reaction N2 + O ? NO + N (R1). We obtain k1 = 1.4 × 1014 exp(?38,300/T) cm3 mol?1 s?1 at 1700–1800 K, with an error limit of ±30%. This value is 25% below the recommendation of Baulch et al. for k1, while it corresponds to a value k1b of the reverse reaction 25% above the Baulch et al. evaluation. Combination of our results with literature values leads to a recommended rate constant for k1b of 9.4 × 1012 T0.14 cm3 mol?1 s?1 over 250–3000 K. This value, which reconciles the differences between the forward and reverse rate constant, is recommended for use in kinetic modeling.  相似文献   

20.
The bimolecular reactions in the title were measured behind shock waves by monitoring the O-atom production in COS? O2? Ar and CS2? O2? Ar mixtures over the temperature range between 1400 and 2200 K. A value of the rate constant for S + O2 → SO + O was evaluated to be (3.8 ± 0.7) × 1012 cm3 mol?1 s?1 between 1900 and 2200 K. This was connected with the data at lower temperatures to give an expression k2 = 1010.85 T0.52 cm3 mol?1 s?1 between 250 and 2200 K. An expression of the rate constant for CS2 + O2 → CS + SO2 was obtained to be k21 = 1012.0 exp(?32 kcal mol?1/RT) cm3 mol?1 s?1 with an error factor of 2 between 1500 and 2100 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号