首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sr3In0.9Co1.1O6, isostructural to Ca3Co2O6, is revealed by the study of the phase relations in the system SrO-InO1.5-CoOx (1000 °C). The structure of Sr3In0.9Co1.1O6 is refined by the combination of powder X-ray and neutron diffraction. Sr3In0.9Co1.1O6 crystallizes in a trigonal lattice with the cell parameters a=b=9.59438(3) Å, c=11.02172(4) Å with the space group R-3c. Its structure possesses 1D (In/Co)O3 chains running along the c-axis constructed by alternating face-sharing CoO6 octahedra and (In0.9Co0.1)O6 trigonal prisms. The co-occupation of In3+ and Co3+ at the trigonal prismatic site is evidenced by elementary analysis and determined by the structure refinement. Sr3In0.9Co1.1O6 is paramagnetic, and the susceptibility is consistent with the occupation of Co3+ at 10% of the trigonal prismatic positions in a high spin state (HS, S=2). The HS Co3+ is well separated by diamagnetic CoO6 octahedra and InO6 trigonal prisms and shows a g factor of 2.0 in the magnetic measurements.  相似文献   

2.
Summary A series of Pr2-xSrxCoO4+λmixed oxides were prepared and used successfully for oxidation of CO and C3H8. The results show that Pr2-xSrxCoO4+λdisplay K2NiF4-type structure and their catalytic activities are closely correlated with the concentration of Co3+, mobile lattice oxygen and oxygen vacancy.</o:p>  相似文献   

3.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

4.
The 5% CoO x /TiO2 catalyst, well-characterized earlier, consisting of complete CoTiO x overlayers on Co3O4 nano-particles (“Type A”) after calcination at 843 K but of clean Co3O4 particles (“Type B”) after a continuous wet oxidation of trichloroethylene (TCE) at 310 K forca. 6 h, has been used to investigate the influence of operating variables on the activity and the stability of the Type B Co3O4 particles during wet catalysis. At 310 K, the catalyst exhibited a 48% steady-state conversion with a transient behavior in activity up toca. 1 h on stream. As the reaction temperature increased, higher performances were achieved and the transient period disappeared, which might be due to easier decapsulation of the Type A Co3O4 particles at higher temperatures to form the Type B Co3O4 particles very active for this wet oxidation reaction. All wet activities were equal to those based on the concentration of Cl? ions produced, implying the complete oxidation of TCE to HCl and CO2, and significant decrease in pH occurred because of the HCl formation. The supported CoO x was very stable for the wet oxidation at 310 K, even forca. 36 h, and XPS measurements of samples of the catalyst following the wet oxidation for desired hours were in good agreement with our earlier proposed model for CoO x species.  相似文献   

5.
A new metal borophosphate PbII4{Co2[B(OH)2P2O8](PO4)2}Cl ( 1 ), containing both Pb2+ cations and Cl anions, was hydrothermally synthesized and characterized by powder X‐ray diffraction, ICP, TG/DTA, and FTIR spectroscopic analyses. The crystal structure determination from single‐crystal X‐ray diffraction reveals that compound 1 crystallizes in the trigonal space group R c (No. 167), a = 9.7513(7) Å, c = 91.060(13) Å, V = 7498.7(13) Å3 and Z = 18. Its structure features a new cobalt borophosphate layer {Co2[B(OH)2P2O8](PO4)2}7– built up from CoO5 square pyramids, [B(OH)2P2O8]5– borophosphate trimers and PO4 tetrahedra. Extra‐framework Pb2+ and Cl ions are located at the vacancy of layers to achieve the charge neutrality of the framework. Magnetic measurements indicate that antiferromagnetic interactions exist between Co2+ ions with a negative Weiss constant of –20.3 K.  相似文献   

6.
On Alkaline Earth Oxocuprates VIII. About Sr2CuO2Cl2 Sr2CuO2Cl2 was prepared and investigated by single crystal X – ray work (space group D–Immm, a = 3.975, c = 15.618 Å). Sr2CuO2Cl2 is isotypic with K2NiF4 – compounds and shows an octahedral configuration for Cu2+. Cl? occupies trans-positions of the octahedral Cu2+/O2? polyhedron. A discussion with related compounds (Sr2CuO3 and Nd2CuO4) explains the observed distribution of O2? and Cl?.  相似文献   

7.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

8.
Surface lattice oxygen in transition‐metal oxides plays a vital role in catalytic processes. Mastering activation of surface lattice oxygen and identifying the activation mechanism are crucial for the development and design of advanced catalysts. A strategy is now developed to create a spinel Co3O4 /perovskite La0.3Sr0.7CoO3 interface by in situ reconstruction of the surface Sr enrichment region in perovskite LSC to activate surface lattice oxygen. XAS and XPS confirm that the regulated chemical interface optimizes the hybridized orbital between Co 3d and O 2p and triggers more electrons in oxygen site of LSC transferred into lattice of Co3O4 , leading to more inactive O2? transformed into active O2?x. Furthermore, the activated Co3O4/LSC exhibits the best catalytic activities for CO oxidation, oxygen evolution, and oxygen reduction. This work would provide a fundamental understanding to explain the activation mechanism of surface oxygen sites.  相似文献   

9.
The effect of replacing Co3+ by Ga3+ and Fe3+ in the perovskite-related tetragonal phase Sr0.75Y0.25CoO2.625 with unit cell parameters: a=2ap, and c=4ap (314 phase) has been investigated. The 314 phase is formed by Sr0.75Y0.25Co1−xMxO2.625+δ, with x?0.375 for M=Ga and x?0.625 for M=Fe. High-resolution transmission electron microscopy and electron diffraction revealed frequent microtwinning in the iron-containing compounds, in contrast to the Ga-substituted 314 phases. Diffraction experiments and electron microscope images indicated that at higher Fe contents, 0.75?x?0.875, a disordered cubic perovskite structure forms. The crystal structures of Sr0.75Y0.25Co0.75Ga0.25O2.625 and Sr0.75Y0.25Co0.5Fe0.5O2.625+δ were refined using neutron powder diffraction data. It was found that the oxygen content of Sr0.75Y0.25Co0.5Fe0.5O2.625+δ is higher than in Fe-free 314 phase, so that δ corresponds to 0.076, whereas δ=0 in Sr0.75Y0.25Co0.75Ga0.25O2.625+δ. Magnetization measurements on the unsubstituted Sr0.7Y0.3CoO2.62 and Ga-substituted Sr0.75Y0.25Co0.75Ga0.25O2.625 compounds indicate the presence of a ferromagnetic-like contribution to the measured magnetization at 320 and 225 K, respectively, while replacing Co by Fe leads to the suppression of this contribution. A neutron diffraction study shows that the Sr0.75Y0.25Co0.5Fe0.5O2.625+δ compound is G-type antiferromagnetic at room temperature, whereas Sr0.75Y0.25Co0.75Ga0.25O2.625 does not exhibit magnetic ordering at room temperature.  相似文献   

10.
The M4+-containing K2NiF4-type phases La0.8Sr1.2Co0.5Fe0.5O4 and La0.8Sr1.2Co0.5Mn0.5O4 have been synthesized by a sol–gel procedure and characterized by X-ray powder diffraction, thermal analysis, neutron powder diffraction and Mössbauer spectroscopy. Oxide ion vacancies are created in these materials via reduction of M4+ to M3+ and of Co3+ to Co2+. The vacancies are confined to the equatorial planes of the K2NiF4-type structure. A partial reduction of Mn3+ to Mn2+ also occurs to achieve the oxygen stoichiometry in La0.8Sr1.2Co0.5Mn0.5O3.6. La0.8Sr1.2Co0.5Fe0.5O3.65 contains Co2+ and Fe3+ ions which interact antiferromagnetically and result in noncollinear magnetic order consistent with the tetragonal symmetry. Competing ferromagnetic and antiferromagnetic interactions in La0.8Sr1.2Co0.5Fe0.5O4, La0.8Sr1.2Co0.5Mn0.5O4 and La0.8Sr1.2Co0.5Mn0.5O3.6 induce spin glass properties in these phases.  相似文献   

11.
A series of mixed oxides Sr4Fe6?xCoxO13?δ (x=0, 1, 2, 3, or 4) were prepared by sol‐gel method and used for catalytic combustion of methane. The structural properties of oxides were characterized by XRD, TGA, and XPS. The layered intergrowth perovskite‐like oxide Sr4Fe5CoO13?δ exhibits the highest catalytic activity for methane combustion under the experimental conditions. The enhanced catalytic activity of Sr4Fe5CoO13?δ for methane combustion could be attributed to the increased amount of oxygen vacancy caused by the partial substitution of cobalt for iron in the Sr4Fe6O13, which was confirmed by TGA and XPS.  相似文献   

12.
Nano crystalline La0.85Sr0.15CoO3 and ruthenium doped compounds (La0.85Sr0.15Co0.9975Ru0.0025O3, La0.85Sr0.15Co0.995Ru0.005O3, La0.85Sr0.15Co0.99Ru0.01O3) are synthesized using solution combustion method. Completely characterized samples are studied for electrochemical OER in neutral and basic medium. Significant enhancement in catalytic activity is noticed once Ru is substituted in the cobalt site. With higher doping level of Ru, capacitance also increases as depicted in the CV behavior. Tafel slope measurements indicate that Ru substitution has profound effect as enhancement in the exchange current density is observed in neutral K2SO4 medium. Enhancement is anticipated due to substitution of Ru, as the RuO2 mixed catalyst does not give similar activity.  相似文献   

13.
Eu2SiO3Cl2 and Eu5SiO4Cl6 were prepared by reaction of EuCl2 with EuSiO3 and Eu2SiO4, respectively, Sr2SiO3Cl2: Eu2+ from mixtures of SrCO3, Eu2O3, SrCl2 · 6H2O and SiO2 under reducing conditions. The crystal structures of Eu2SiO3Cl2 [a = 1118.7(5), c = 952.6(1) pm, tetragonal, I4/m, Z = 8, R = 3.3, Rw = 3.0%] and Eu5SiO4Cl6 [a = 900.4(1), b = 1401.7(2), c = 1112.3(2) pm, β = 103.51(1)°, monoclinic, C2/c, Z = 4, R = 3.6, Rw = 2.6%] were determined from four-circle diffractometer data and compared with related compounds. The luminescence properties were investigated at 300 K and at 4.2 K; all compounds show intense bluish-green photoluminescence. Sr2SiO3Cl2:Eu2+ shows thermoluminescence.  相似文献   

14.
The reduced Ruddlesden-Popper phases, Sr3Co2O5+δ with δ=0.91, 0.64 and 0.38, have been prepared in a nitrogen atmosphere. The crystal structures were determined by powder neutron diffraction. Oxygen vacancies are found both in O(3) and O(4) sites but the majority are along one crystallographic axis in the CoO2 plane, inducing an orthorhombic distortion of the normally tetragonal n=2 Ruddelsden-Popper structure. Superstructures due to oxygen ordering are observed by electron microscopy. The magnetic measurements reveal complex behavior with some ferromagnetic interactions present for Sr3Co2O5.91 and Sr3Co2O5.64.  相似文献   

15.
On the Compound Sr7Mn4O15 and Structure Relations to Sr2MnO4 and α-SrMnO3 The “compound” hitherto described as a α modification of Sr2MnO4 is shown to consist of a mixture of SrO and the new monoclinic compound Sr7Mn4O15 crystallizing in the space group P 21/c, a = 681.78(6), b = 962.24(8), c = 1038.0(1) pm, β = 91.886(7)°, Z = 2. Up to 0.3 mm long black crystals were grown from prereacted Sr7Mn4O15, SrO, and SrCl2 at 1350°C in a sealed platinum tube under argon. Its structure is related to α-SrMnO3. It contains layers of cornershared double octahedra [O2/2OMnO3MnO2O1/2]7? parallel to (100). Above 100 K the magnetism of Sr7Mn4O15 follows the Curie Weiss law with Θ ~ -426 K and a moment μeff = 3.62 μB corresponding Mn4+.  相似文献   

16.
A previously developed procedure for modeling the electronic structure of oxide systems, using a quantum-chemical calculation in the X-scattered wave approximation, has been applied to the investigation of cobaltous-cobaltic oxide Co3O4. As a model of octahedral and tetrahedral sublattices of the oxide we took CoO6 9– and CoO4 6–, respectively. An energy scheme has been constructed for Co3O4, and a quantitative interpretation has been given for the photoelectron and x-ray electronic spectra of the valence band, optical excitation spectra, and satellite shake-up lines.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 3, pp. 291–300, May–June, 1990.  相似文献   

17.
The First Oxocobaltate of the Type A2CoIIO2: K2CoO2 = K4[OCoO2CoO] By “reaction with the cylinder surface” of intimate mixtures of K2O and CdO (molar ratio 1:1) in closed Co-Cylinders at 450°C during 73 d dark-red single-crystals of K2CoO2 were obtained. Structure solution and refinement (four-circle diffractometer-data, MoKα , 1 567 independent Io(hkl), none was omitted, R = 3.25%, Rw = 2.67%) result in a monoclinic unit cell containing anions [Co2O4]4? of two connected triangles similar to those of Rb10[CoIO2]2[CoO4]. MAPLE-values and Charge-distributions are given and discussed.  相似文献   

18.
In this paper, the ionic conductivities of La0.54Sr0.44Co0.2Fe0.8O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ were measured by electron-blocked alternating current impedance analysis technique. The results show that the oxygen ion conductivity of La0.54Sr0.44Co0.2Fe0.8O3-δ is nearly five times higher than that of La0.6Sr0.4Co0.2Fe0.8O3-δ, which makes La0.54Sr0.44Co0.2Fe0.8O3-δ cathode more conductive than YSZ electrolyte. Consequently, the electrochemical reaction region is extended from the interface between the cathode and the electrolyte to the whole surface of the cathode grains, with a result of the cathode polarization overpotential being decreased and the cell electrical performance being improved. Besides, the XRD results show that both La0.54Sr0.44Co0.2Fe0.8O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ begin to react with 8YSZ([Y2O3]0.08·[ZrO2]0.92) at 850 °C, but La0.54Sr0.44Co0.2Fe0.8O3-δ with a faster reaction rate. The thermal expansion experiments manifest that the two LSCFs have approximate thermal expansion coefficients, being about 14 × 10−6–15 × 10−6 K−1 from 500 °C to 700 °C, which is moderately higher than that of 8YSZ.  相似文献   

19.
Two Chloride Silicates of Yttrium: Y3Cl[SiO4]2 and Y6Cl10[Si4O12] The chloride‐poor yttrium(III) chloride silicate Y3Cl[SiO4]2 crystallizes orthorhombically (a = 685.84(4), b = 1775.23(14), c = 618.65(4) pm; Z = 4) in space group Pnma. Single crystals are obtained by the reaction of Y2O3, YCl3 and SiO2 in the stoichiometric ratio 4 : 1 : 6 with ten times the molar amount of YCl3 as flux in evacuated silica tubes (7 d, 1000 °C) as colorless, strongly light‐reflecting platelets, insensitive to air and water. The crystal structure contains isolated orthosilicate units [SiO4]4– and comprises cationic layers {(Y2)Cl}2+ which are alternatingly piled parallel (010) with anionic double layers {(Y1)2[SiO4]2}2–. Both crystallographic different Y3+ cations exhibit coordination numbers of eight. Y1 is surrounded by one Cl and 7 O2– anions as a distorted trigonal dodecahedron, whereas the coordination polyhedra around Y2 show the shape of bicapped trigonal prisms consisting of 2 Cl and 6 O2– anions. The chloride‐rich chloride silicate Y6Cl10[Si4O12] crystallizes monoclinically (a = 1061,46(8), b = 1030,91(6), c = 1156,15(9) pm, β = 103,279(8)°; Z = 2) in space group C2/m. By the reaction of Y2O3, YCl3 and SiO2 in 2 : 5 : 6‐molar ratio with the double amount of YCl3 as flux in evacuated silica tubes (7 d, 850 °C), colorless, air‐ and water‐resistant, brittle single crystals emerge as pseudo‐octagonal columns. Here also a layered structure parallel (001) with distinguished cationic double‐layers {(Y2)5Cl9}6+ and anionic layers {(Y1)Cl[Si4O12]}6– is present. The latter ones contain discrete cyclo‐tetrasilicate units [Si4O12]8– of four cyclically corner‐linked [SiO4] tetrahedra in all‐ecliptical arrangement. The coordination sphere around (Y1)3+ (CN = 8) has the shape of a slightly distorted hexagonal bipyramid comprising 2 Cl and 6 O2– anions. The 5 Cl and 2 O2– anions building the coordination polyhedra around (Y2)3+ (CN = 7) form a strongly distorted pentagonal bipyramid.  相似文献   

20.
The M4+-containing K2NiF4-type phases La0.8Sr1.2Co0.5Fe0.5O4 and La0.8Sr1.2Co0.5Mn0.5O4 have been synthesized by a sol-gel procedure and characterized by X-ray powder diffraction, thermal analysis, neutron powder diffraction and Mössbauer spectroscopy. Oxide ion vacancies are created in these materials via reduction of M4+ to M3+ and of Co3+ to Co2+. The vacancies are confined to the equatorial planes of the K2NiF4-type structure. A partial reduction of Mn3+ to Mn2+ also occurs to achieve the oxygen stoichiometry in La0.8Sr1.2Co0.5Mn0.5O3.6. La0.8Sr1.2Co0.5Fe0.5O3.65 contains Co2+ and Fe3+ ions which interact antiferromagnetically and result in noncollinear magnetic order consistent with the tetragonal symmetry. Competing ferromagnetic and antiferromagnetic interactions in La0.8Sr1.2Co0.5Fe0.5O4, La0.8Sr1.2Co0.5Mn0.5O4 and La0.8Sr1.2Co0.5Mn0.5O3.6 induce spin glass properties in these phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号