首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of nanosilica on the concentration fluctuation of polystyrene/poly (vinyl methyl ether) (PS/PVME) mixtures was investigated during phase separation. The amplitude of concentration fluctuation was quantified by dielectric spectrums based on the idea of Lodge–Mcleish model and the linearized Cahn–Hilliard theory could describe the amplitude evolution of concentration fluctuation at the early stage of phase separation. Hydrophilic nanosilica A200 dispersed in PVME‐rich phase behaved an obvious inhibition effect on the concentration fluctuation of blend matrix, while hydrophobic nanosilica R974 dispersed in PS‐rich phase had little effect on the concentration fluctuation. The kinetics and amplitude evolution of concentration fluctuation during phase separation for PS/PVME/A200 nanocomposites were remarkably restrained due to the surface adsorption of PVME on A200. As the segmental dynamics of PVME and PS in homogeneous matrix was hardly influenced by A200 and R974, the enhanced miscibility and the significantly constrained flow relaxation of PVME chains might contribute to the retarded concentration fluctuation of PS/PVME/A200 nanocomposites. While the weak interaction between R974 and components of blend matrix and little effect of R974 on the molecular dynamics of PS chains may result in the weak retardation of concentration fluctuation for blend matrix. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1337–1349  相似文献   

2.
左敏 《高分子科学》2017,35(12):1524-1539
The variation of phase morphology, critical temperature of demixing, and molecular dynamics for polystyrene/poly(vinyl methyl ether)(PS/PVME) blends induced by hydrophilic nanosilica(A200) or hydrophobic nanosilica(R974) was investigated. With the phase separation of blend matrix, A200 migrated into PVME-rich phase due to strong interaction between A200 and PVME, while R974 moved into PS-rich phase. The thermodynamic miscibility and concentration fluctuation during phase separation of blend matrix were remarkably retarded by A200 nanoparticles due to the surface adsorption of PVME on A200, verified by the correlation length ξ near the critical region from rheological measurement and the weakened increment of reversing heat capacity(ΔC_p) during glass transition via modulated differential scanning calorimetry(MDSC). The restricted chain diffusion induced by nanosilica still occurred despite no influence of A200 and R974 on the segmental dynamics of homogenous blend matrix. The interactions between nanosilica and polymer components could restrict the terminal relaxation of blend matrix and further manipulate their phase behavior.  相似文献   

3.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

4.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

5.
Dielectric permittivities and loss tangents of 10 and 30% poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)–polystyrene (PS) blends and 10 and 25% poly(vinyl methyl ether) (PVME)–polystyrene blends have been measured from 80 to 360 K at 1 and 10 kHz. The PPO-PS blends have two secondary relaxations below Tg and the PVME-PS blends have three regions. All blends have a β process which appears near 290 K, is independent of PPO or PVME concentration, and is associated with the local modes of motions of PS chains. It is suggested that the β process of PS allows a dipolar reorientation of the PPO or PS chain segments by creating more favorable surroundings for the motions of the latter. The effect of physical aging in the PPO-PS blend is substantial but the “memory effect” is significantly less. This is due to the lower contribution to tanδ from the β process of the blend.  相似文献   

6.
In recent years, many factors influencing phase behavior of polymer blends have been studied because of their widely technological importance, as a simple method of formulating new materials with tailored properties which make them suitable for a variety of applications. This work has three main goals which were reached by using the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) and the Sanchez–Lacombe (SL) non-cubic equations of state (EoS), which in previous works have shown their ability to handle long chain and associating interactions. First, both equations of state were tested with the correlation of the specific volumes of pure blends (PBD/PS, PPO/PS, PVME/PS, PEO/PES) and the prediction of the specific volumes for blends; second, the modeling of blend miscibilities in the liquid–liquid equilibria (LLE) of PBD/PS, PPG/PEGE, PVME/PS, PEO/PES, and PnPMA/PS blends; third, the modeling of the phase behavior of PS/PVME blends at various compositions in the presence of CO2. PC-SAFT and SL pure-component parameters were regressed by fitting pure-component data of real substances (liquid pressure–volume–temperature, PVT, data for polymers and vapor pressure and saturated liquid molar volume for CO2) and the fluid phase behavior of blend systems were simulated fitting one binary interaction parameter (kij) by regression of experimental data using the modified likelihood maximum method. Results were compared with experimental data obtained from literature and an excellent agreement was obtained with both EoS, which were also capable of predicting the fluid phase behavior corresponding to the critical solution temperatures (LCST: lower critical solution temperature, UCST: upper critical solution temperature) of blends.  相似文献   

7.
The phase behavior and phase‐separation dynamics of polystyrene/polyvinyl methyl ether (PS/PVME) blend with a critical composition of 70 vol % PVME were examined with a light scattering technique under a shear‐rate range of 0.1–40 s?1. If the shear rates were less than 8 s?1 and the starting temperatures of the measurement were 343 and 383 K, respectively, two cloud points were observed, whereas after the shear rate was higher than 8 s?1, only one cloud point existed, 20 K higher than that of the static state of the blend. Investigation of the phase‐separation dynamics at 443 K suggested that in the vorticity direction the phase‐separation behavior at the early stage and the later stage can be explained by Cahn–Hilliard linearized theory and the exponent growth law, respectively. Phase separation occurs after a shearing time, which was called a delay time τd. The delayed time τd, the apparent diffusion coefficient, and the exponent term of the blend show strong dependence on shear rates. A theoretical prediction of the phase behavior of PS/PVME under a shear flow field by introducing an elastic energy term into Flory's equation‐of‐state theory was made, and the prediction was consistent with the experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 661–669, 2003  相似文献   

8.
《Thermochimica Acta》1987,114(1):165-170
Glass-transition temperatures of compatible PVME/PS blends show, beside the well-known composition dependence, a predominant influence of the molecular weight of the blend components, mainly that of PS. This influence can be reproduced by an extended Gordon-Taylor equation only. The values, however, of the parameters of the extended Gordon-Taylor equation show molecular specific correlations.  相似文献   

9.
The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.  相似文献   

10.
It is suggested that the non-locality of the entropy part of the interaction parameter in partially miscible blends can be measured directly by scattering experiments. The structure factor computed in the random phase approximation is compared with experiments on weakly crosslinked polystyrene (PS) polyvinylmethylether (PVME) blends. These polymers have significantly different monomer units to form ‘smooth’ (PVME) and ‘rough’ (PS) polymers. An excess scattering is observed and related to the non-locality. It is further shown that these effects are significant near the glass transition of the blend. In particular, the influence of the non-local mixing entropy on the single chain behaviour close to the onset of the microphase separation is studied quantitatively.  相似文献   

11.
The oxidation of polystyrene (PS), poly(vinyl methyl ether) (PVME), and their mixtures has been studied by the chemiluminescence method. It was found that luminescence versus temperature curves had sharp inflections that shifted to higher temperatures with increasing PS content of the blends. A linear relationship was obtained between inflection temperatures and onsets of oxidation exotherms as measured by calorimetry. The inflection points for the mixtures also correlated linearly with the temperatures of thermally induced phase separation  相似文献   

12.
The segmental dynamics of backbone‐deuterated polystyrenes (d3PS) with varying molecular weights (1.7–67 kg/mol) have been measured in blends with poly(vinyl methyl ether) (PVME). 2H NMR T1 values at 15 and 77 MHz are reported for the pure d3PS and for the dilute d3PS component in PVME matrices. The temperature shift that is needed to superpose the NMR T1 data for the pure d3PS and the d3PS as a dilute component in the blend ranges from 45 to 70 K. In the framework of Lodge/McLeish model, the self‐concentration value for d3PS in these dilute blends with PVME is found to be independent of molecular weight. We thus establish for this system that the substantial influence of molecular weight on the blend segmental dynamics can be explained by homopolymer Tg differences. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2252–2262, 2007  相似文献   

13.
The effect of simple shear flow on the phase behavior and morphology was investigated for both polystyrene/poly(vinyl methyl ether) (PS/PVME) and poly(methyl methacrylate)/poly(styrene‐co‐acrylonitrile) (PMMA /SAN‐29.5) blends, which have LCST (lower critical solution temperature)‐type phase diagram. The measurements were carried out using a special shear apparatus of two parallel glass plates type. The PS/PVME blends showed shear‐induced demixing and shear‐induced mixing at low and high shear rate values, respectively. In addition, the rotation speed and the sample thickness were found to have a pronounced effect on the phase behavior under shear flow. On the‐other hand, PMMA/SAN blend showed only shear‐induced mixing and the magnitudes of the elevation of the cloud points were found to be composition and molecular weight dependent. The morphology of the PMMA/SAN=75/25 blend indicated that shear‐induced mixing occurred at a critical shear rate value, below which the two phases were highly oriented and elongated in the flow direction.  相似文献   

14.
嵌段高聚物、均聚物共混体系相容性是近年来研究的热点。本工作以光学显微镜、DSC、FT-IR为手段,研究了三嵌段高聚物苯乙烯-丁二烯-苯乙烯(SBS);SBS-48、SBS-30,SBS-28与聚乙烯基甲基醚共混体系的相容性。DSC结果表明,随SBS中PS含量的升高,体系相容性变好,PS段分子量增大,也有助于体系相容。FT-IR结果表明PVME中COCH_3在1100cm~(-1)附近呈现的双峰的相对强度对体系的相容性十分敏感,而由于苯环C—H振动产生的698cm~(-1)峰位却不象PS/PVME体系那样随相容性的改变而有显著的改变。总而言之,嵌段高聚物SBS/均聚物PVME共混体系中,体系的相容性依赖于嵌段高聚物在体系中的组份含量及嵌段高聚物中PS的重量百分含量,PS段分子量的大小对体系相容性也有影响。  相似文献   

15.
The sorption and transport properties of CO2 in miscible PS/PVME blends at 20°C are reported as a function of pressure from 1 to 15 atm. The complex shape of isotherms for glassy blends and the concentration-dependent diffusion coefficient for rubbery blends reveal a plasticization by sorbed CO2. The significant depression in Tg has to be taken into account in the analysis of the sorption data. Diffusion coefficient for CO2 passes through a minimum when plotted against the blend composition. Such a behavior can be quantitatively related to the negative volume mixing of the PS/PVME system in the framework of the theories based on unoccupied volume. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
利用光学显微镜-剪切台联用系统研究了振荡剪切流场下聚苯乙烯(PS)/聚甲基乙烯基醚(PVME)/二氧化硅(SiO2)纳米粒子复合物的热力学稳定性. 结果表明,小振幅振荡剪切可导致PS/PVME共混物出现类似在稳态流场下的剪切诱导相容及剪切诱导相分离现象. 共混体系存在临界振荡频率ωc,当振荡频率低于ωc时,发生剪切诱导相分离(SID)行为,反之发生剪切诱导相容(SIM)行为. SiO2纳米粒子的加入使复合体系的相容性提高. 存在一个临界SiO2纳米粒子含量φc,当SiO2纳米粒子含量高于φc时,复合体系中不存在临界振荡频率ωc,低振荡频率下的剪切诱导相分离得到抑制. 此外,复合体系的上述行为与升温速率和共混物组成密切相关.  相似文献   

17.
The mutual influence between the PP/PS polymer blend components during UV photodegradation was studied. Polypropylene (PP) and polystyrene (PS) have different photodegradation mechanisms, due to the larger UV absorption of polystyrene and formation of more stable tertiary carbon radicals. To compare the stabilities the kinetics of carbonyl formation was measured in different blend compositions. The results show that polystyrene presented a faster carbonyl formation than polypropylene, while the blends display faster kinetics than the isolated components. The kinetics of carbonyl formation of the blends was a function of polypropylene content. This result is unexpected if one considers the behaviour of each component alone. The kinetics and mechanism of UV degradation can be only explained taking into account the interaction between the blend components. PS absorbs UV light and energy is transferred to PP, which produces more reactive tertiary carbon free radicals. The effect of the interaction between the domains is enhanced when a compatibiliser is used, corroborating the hypothesis of energy transfer.  相似文献   

18.
Radiation induced crosslinking of poly(vinyl methylether) (PVME) has been investigated in aqueous solutions. The spectral and kinetic features of the transients involved in the crosslinking reaction have been studied by pulse radiolysis of dilute PVME solutions. H atoms reacts with PVME, like OH radicals, by abstracting an H atom predominantly from β-position with respect to ---OCH3 group, but the rate of reaction of H atom is an order of magnitude slower than that of OH reaction. The PVME radicals formed by H attack have been found to decay by usual 2nd-order kinetics unlike PVME radicals produced by OH attack that are reported to decay by a complex time-dependent kinetics that deviates strongly from 2nd-order kinetics. The rate constant of eaq with PVME at pH 5.5 has been found to be 1.2×108 dm3 mol−1 s−1. From the decay behaviour of the transient species formed by reaction of eaq with PVME, it has been shown that the transient initially reacts with solvent protons by a fast reaction to yield radical species which subsequently recombine by a slow mode. The dependence of gelation dose and radiation yields of crosslinking (Gx) of PVME on various factors such as polymer concentration, dose rate, pH, presence of oxygen and crosslinking agent has also been studied by steady-state radiolysis using an electron-beam accelerator.  相似文献   

19.
Phase separation in both thin and thick films of polystyrene (PS) and poly(vinyl methyl ether) (PVME) was studied by small-angle laser light scattering (SALLS), atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Blend films with controlled thickness were obtained by spin-coating polymer-toluene solutions with various concentrations. Films with thicknesses smaller and larger than the maximum wavelength of concentration fluctuations were considered. Morphology of the blend films was characterized during and after phase separation. The obtained peculiar morphology was related to surface enrichment with the lower-surface-energy component, as was verified by XPS analyses.  相似文献   

20.
This article presents thermal diffusivity (D) measurements by flash radiometry for the polymer blend of polystyrene (PS) and poly(vinyl methyl ether) (PVME) with lower critical solution temperature (LCST) phase diagram. Dependence of D on PS content measured at 100°C coincides a phase diagram determined by a cloud point measurement. D value for the blend decreases with increasing PS content and has minimum value at the PS content around 20 wt % from which D increases again with increasing PS content. If the concentration fluctuation between two components in the miscible states at the temperature close to LCST causes the remarkable phonon scattering, the composition dependence of D would resemble the phase diagram. D for the sample in the phase-separated state is larger than that for the miscible state. The larger D in the phase-separated sample would be due to the decrease of the total surface area microscopically contacted to the counter component in the phase-separated state. Dependence of D on temperature for the phase-separated sample is quite different from that of the miscible one. On an isothermal measurement of D for PS/PVME (10 : 90) at 110°C just below the cloud point, D started to increase at time above 100 min and leveled out above 250 min. Isothermal observation of sample film by a differential interference contrast microscopy showed the creation of some structure due to the nucleation and growth of interface at 225 min and it became obvious above 250 min. Thus, the increase in D at 110°C implies that D can sensitively reflect the change in microscopic structures which follows the nucleation and growth of interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1869–1876, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号