首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The racemic 2‐azabicyclo[3.2.2]nonanes 5 and 18 were synthesized and tested as β‐glycosidase inhibitors. The intramolecular Diels–Alder reaction of the masked o‐benzoquinone generated from 2‐(allyloxy)phenol ( 6 ) gave the α‐keto acetal 7 which was reduced with SmI2 to the hydroxy ketone 8 . Dihydroxylation, isopropylidenation (→ 12 ), and Beckmann rearrangement provided lactam 15 . N‐Benzylation of this lactam, reduction to the amine 17 , and deprotection provided the amino triol 19 which was debenzylated to the secondary amine 5 . Both 5 and 19 proved weak inhibitors of snail β‐mannosidase (IC50 > 10 mM ), Caldocellum saccharolyticum β‐glucosidase (IC50 > 10 mM ), sweet almond β‐glucosidase (IC50 > 10 mM ), yeast α‐glucosidase ( 5 : IC50 > 10 mM ; 19 : IC50 = 1.2 mM ), and Jack bean α‐mannosidase (no inhibition detected).  相似文献   

2.
The reaction of 2-aminopyridine, o-phthaldehydic acid and potassium cyanide gave pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-one, which upon treatment with propargylbromide, yielded both O and N alkylated products. 2-Aminopyridine, o-phthaldehyde and potassium cyanide gave 1-cyano-2-(2-pyridyl)isoindole which rearranged in acid to give the previously unreported parent pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinole. Structures were confirmed using uv, ir, nmr and x-ray spectroscopy.  相似文献   

3.
A number of substituted benzimidazo[1, 2-c][1,2,3]benzotriazines were prepared by the diazotization of the appropriate 2-(o-aminophenyl)benzimidazoles. Diazotization of 2-(o-aminophenyl)naphth[1,2-d]imidazole yielded a new heterocyclic ring system. Various methods of preparation of 2 - (o-aminophenyl)benzimidazoles were investigated. The condensation of o-phenylenediamines with anthranilic acids, in the presence of polyphosphoric acid, provided a convenient route to 2-(o-aminophenyl)benzimidazoles but in several cases the products were contaminated with considerable amounts of 6-(o-aminophenyl)benzimidazo[1,2 -c]quinazolines. 2 - (o-Aminophenyl)benzimidazoles were also obtained by the catalytic hydrogenation of 2-(o-nitrophenyl)benzimidazoles which resulted from the condensation of an o-phenylenediamine with an o-nitrobenzaldehyde in ethanol, nitrobenzene or acetic acid. When the condensation was carried out in nitrobenzene, small amounts of 2-(o-aminophenyl)benzimidazoles were also formed. The Weidenhagen synthesis, which involves the reaction of an aromatic diamine with an aldehyde in the presence of copper acetate and subsequent decomposition of the cuprous salt of the benzimidazole, yielded 2-(o-aminophenyl)benzimidazoles instead of the expected 2-(o-nitrophenyl)benzimidazoles when the decomposition was carried out in ethanol. When the cuprous salt was treated with hydrogen sulfide in dilute hydrochloric acid, a mixture of amino- and nitrobenzimidazoles resulted. The ultraviolet and infrared spectra of all the compounds prepared were examined.  相似文献   

4.
The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-thiopyran] ring system ( 2a ) has been prepared from o-bromobenzoic acid. The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-pyran] ring system ( 3a ) has been prepared from 2-bromobenzhydrol methyl ether. Several 3-(dimethylaminoalkyl) derivatives of both 2a and 3a were prepared by lithiation followed by alkylation.  相似文献   

5.
The reaction of 3-(dimethylamino)-1-oxo-1H-naphtho[2,1-b]pyran-2-carbaldehyde (Ia) with o-phenylenediamines or N-monosubstituted o-phenylenediamines in refluxing glacial acetic acid afforded the corresponding naphtho[1′,2′:5,6]pyrano[2,3-b][1,5]benzodiazepin-15-(8H)ones V in very good yields. A similar result was achieved when the reaction was carried out in refluxing pyridine, using N-monosubstituted o-phenylenediamine hydrochlorides. The isolation of a significant intermediate as well as the synthesis through a different univocal pathway confirmed the structure of the compounds V. Moreover the reaction of Ia with N-monosubstituted o-phenylenediamines in refluxing pyridine generally afforded only low yields of compounds V, sometimes together with naphtho[1′,2′:5,6]pyrano[2,3-b][1,5]benzodiazepin-15-(13H)ones VII, isomers of V.  相似文献   

6.
A number of methyl- and halogeno-substituted benzimidazo[1,2-c][1,2,3]benzotriazines were subjected to a series of hydrolytic cleavages in acid media. The reactions of these compounds with dilute sulfuric acid yielded 2-(o-hydroxyphenyl)benzimidazoles. Concentrated hydrochloric acid produced a mixture of 2-(o-chlorophenyl)- and 2-(o-hydroxyphenyl)benzimidazoles. Hydrogen chloride in ethanol caused the formation of 2- phenylbenzimidazoles contaminated with small amounts of 2 - (o-chlorophenyl)benzimidazoles. The benzimidazo[1,2-c][1,2,3]benzotriazines underwent the Sandmeyer reaction to form 2-(o-chlorophenyl)- and 2-(o-bromophenyl)benzimidazoles in excellent yields. These reactions illustrated the behavior of these 1,2,3-triazines as internal diazonium compounds. Naphth[1′,2′(2′,1′):4,5]imidazo[1,2-c][1,2,3]benzotriazine behaved similarly. Bromination of some benzimidazo[1, 2 - c][1,2,3]benzotriazines in aqueous medium yielded bromine-substituted [1,2-c][1,2,3]benzotriazines.  相似文献   

7.
The reactions of the 3-substituted 4-amino-8-ethoxycarbonyl[5,1-c][1,2,4]triazines 1 and 2 with o-amino-phenol hydrochloride gave the pyrazolo[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzoxazepines 5 and 8 . The alkylation of 5 with methyl iodide and isopropyl iodide afforded the 6-alkoxylpyrazolo[1′,5′:3,4][1,2,4]triazino-[5,6-b][1,5]benzoxazepines 6a and 6b , respectively. Refluxing of 5, 6a, 6b and 8 in hydrochloric acid/acetic acid resulted in ring transformation to produce the spiro[benzoxazole-2′(3′H),4(1H)pyrazolo[5,1-c][1,2,4]-triazines] 7a, 7b and 9 . The screening data of the above compounds was described.  相似文献   

8.
The reactions of the pyrazole-5-diazonium salt 3 with malononitrile and ethyl cyanoacetate gave 4-amino-3-cyano-8-ethoxycarbonylpyrazolo[5,1-c][1,2,4]triazine 7 and 4-amino-3,8-bisethoxycarbonylpyrazolo[5,1-c]-[1,2,4]triazine 8 , whose reactions with p-chloroaniline hydrochloride afforded 4-amino-8-ethoxycarbonyl-3-(p-chlorophenyl)amidinopyrazolo[5,1-c][1,2,4]triazine 9 and 4-amino-8-ethoxycarbonyl-3-(p-chlorophenyl)car-bamoylpyrazolo[5,1-c][1,2,4]triazine 10 , respectively. The reactions of 7 and 8 with o-phenylenediamine di-hydrochloride provided 9-ethoxycarbonyl-13H-spiro[benzimidazole-2′(3′H),6(5H)-pyrazolo[1,5′:3,4][1,2,4]tri-azino[5,6-b][1,5]benzodiazepine] hydrochloride 11a and 9-ethoxycarbonyl-6-oxo-13H-5,6-dihydropyrazolo-[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzodiazepine 12 , respectively. The antifungal activity of the above compounds was described.  相似文献   

9.
Synthesis of 2‐(o‐nitrophenyl)‐6‐arylthiazolo[3,2‐b]‐[1,2,4]‐triazoles 4 and its isomer 3‐(o‐nitrophenyl)‐5‐arylthiazolo[2,3‐c]‐[1,2,4]‐triazoles 6 has been achieved starting from the appropriate 1‐(o‐nitrobenzoyl)‐3‐thiosemicarbazide 1 . Compound 1 on condensation with α‐haloketones gives 2‐(o‐nitrobenzoyl)hydrazino‐4‐arylthiazole hydrobromide 5 , which, on cyclization with POCl3, affords thiazolo[3,2‐b]‐[1,2,4]‐triazoles 6 and not the isomeric thiazolo[3,2‐b]‐[1,2,4]‐triazoles 4 . This has been established by an unequivocal synthesis of 4 through polyphosphoric acid cyclization of 5‐aroylmethylmercapto‐3‐o‐nitrophenyl‐[1,2,4]‐triazole 3 . Compound 3 was synthesized by condensation of α‐haloketones with 5‐mercapto‐3‐(o‐nitrophenyl)‐[1,2,4]‐triazole 2 , obtained cyclization of 2‐(o‐nitrobenzoyl)hydrazinecarbothioamide 1 with NaOH. The antibacterial and antifungal activities of some of the compounds have also been evaluated.  相似文献   

10.
Several derivatives of the novel benzo[b]pyrazolo[5′,1′:2,3]pyrimido[4,5‐e][1,4]thiazine ring system have been synthesized through the one‐pot cyclocondensation of 6‐bromo‐7‐chloro‐2‐(ethylthio)‐5‐methylpyrazolo[1,5‐a]pyrimidine‐3‐carbonitrile ( 4 ) with o‐aminothiophenol in the presence of Et3N in CH3CN. The true regio isomer ( 5 ) was also determined by X‐ray crystallographic analysis. The N‐alkylation of the synthesized compound ( 5 ) was also accomplished.  相似文献   

11.
The synthesis of new pyrido[3′,2′:5,6]thiopyrano[3,2‐b]indol‐5(6H)‐ones was accomplished by the Fischer‐indole cyclization of some 2,3‐dihydro‐3‐phenylhydrazonothiopyrano[2,3‐b]pyridin‐4(4H)‐ones, obtained from the 2,3‐dihydro‐3‐hydroxymethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐one, by the Japp‐Klingemann reaction. 6H‐Pyrido[3′,2′:5,6]thiopyrano[4,3‐b]quinolines were obtained by reaction of 2,3‐dihydrothiopyrano‐[2,3‐b]pyridin‐4(4H)‐ones with o‐aminobenzaldehyde or 5‐substituted isatins. The preparation of some derivatives, functionalized with an alkylamino‐substituted side chain, is also described.  相似文献   

12.
The cyclocondensation of 5‐hydroxy‐pyrido[2,3‐d]pyrimidines 1 with malonates gives pyrano[2′,3′:4,5]‐pyrido[2,3‐d]pyrimidines 2 . Nitration of 1 and reduction with zinc in the presence of carboxylic acids/anhydrides gave 2‐alkyloxazolo[5′,4′:4,5]pyrido[2,3‐d]pyrimidines 4 , which were ring‐opened to 6‐aminopyrido[2,3‐d]pyrimidines 5, 6 and 7 . Cyclization of 6‐aminopyrido[2,3‐d]pyrimidines 6 with benzoylchlorides 8 gave 2‐aryloxazolo[5′,4′:4,5]pyrido[2,3‐d]pyrimidines 9 . Reaction conditions for the cyclization have been studied by differential scanning calorimetry (DSC).  相似文献   

13.
In the presence of Me3Al, 1-cyanovinyl acetate added to 2,2′-ethylidenebis[3,5-dimethylfuran] ( 1 ) to give a 20:10:1:1 mixture of mono-adducts 4,5,6 , and 7 resulting from the same regiocontrol (‘para’ orienting effect of the 5-methyl substituent in 1 ). The additions of a second equiv. of dienophile to 4–7 were very slow reactions. The major mono-adducts 4 (solid) and 5 (liquid) have 2-exo-carbonitrile groups. The molecular structure of 4 (1RS,1′RS,2SR,4SR)-2-exo-cyano-4-[1-(3,5-dimethylfuran-2-yl)ethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate) was determined by X-ray single-crystal radiocrystallography. Mono-adducts 4 and 5 were saponified into the corresponding 7-oxanorbornenones 8 and 9 which were converted with high stereoselectivity into (1RS,1′SR,4RS,5RS,6RS)-4-[1-(3,5-dimethyl furan-2-yl)ethyl]-6-exo-methoxy-1,5-endo-dimethyl-7-oxabicyclo [2.2.1]heptan-2-one dimethyl acetal ( 12 ) and its (1′RS-stereoisomer 12a , respectively. Acetal hydrolysis of 12a followed by treatment with (t-Bu)Me2SiOSO2CF3 led to silylation and pinacol rearrangement with the formation of (1RS,1′RS,5RS,6RS)-4-[(tert-butyl)dimethy lsilyloxy]-1-(3,5-dimethylfuran-2-yl)ethyl]-5-methoxy-6-methyl-3-methylidene- 2-oxabicyclo[2.2.1]heptane ( 16 ). In the presence of Me3Al, dimethyl acetylenedicarboxylate added to 12 giving a major adduct 19 which was hydroborated and oxidized into (1RS,1′RS,2″RS,3″RS,4SR,4″RS,5 SR,6SR)-dimethyl 5-exo-hydroxy-4,6-endo-dimethyl-1-[1-(3-exo,5,5-trimeth oxy-2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-yl)ethyl]-7-oxabicyclo [2.2.1]hept-2-ene-2,3-dicarboxylate ( 20 ). Acetylation of alcohol 20 followed by C?C bond cleavage afforded (1′RS,1″SR,2RS,2′″SR,3RS, 3″SR,4RS,4″SR,5RS)-dimethyl {3-acetoxy-2,3,4,5-tetrahydro-2,4-dimethyl-5-[1-(3-exo,5,5-trimethoxy ?2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-1-yl)-ethyl]furan-2,5-diyl} bis[glyoxylate] ( 24 ).  相似文献   

14.
2-Amino-6,7-dihydrothieno[3′,2′:5,6]pyrido[2,3-rf]pyrimidin-4-one ( 1 ) was prepared in three steps from S-(3-butynyl)thiosemicarbazide hydroiodide ( 3 ) and diethyl ketomalonate. The featured step in this synthetic sequence was an intramolecular Diels-Alder reaction of the in situ generated 3-(3-butynylthio)-6-carboethoxy-5-chloro-1,2,4-triazine ( 9 ) to provide the key intermediate 5-carboethoxy-6-chloro-2,3-dihydrothieno-[2,3-b]pyridine ( 6 ). In the course of studies directed toward the preparation of 1 , thermolysis of 3-(3-butynyl-thio)-6-carboethoxy-1,2,4-triazin-5(2H)-one ( 2 ) was found to involve competitive intramolecular Diels-Alder and intramolecular coplanar cycloamination processes, providing the 2,3-dihydrothieno[2,3-b]pyridin-6(7H)-one ( 4 ) and the 1,3-thiazino[3,2-b]-1,2,4-triazin-3-one (5) derivatives, respectively.  相似文献   

15.
Catalytic reductive scission of phthalazine (II) utilizing a two-stage palladium-Raney nickel procedure afforded o-xylene-α,α′-diamine (III) in 97% yield. Treatment of III with carbon disulfide gave [o-(aminomethyl)benzyl]dithiocarbamic acid (IV), which upon thermal cyclization furnished 1,2,4,5-tetrahydro-3H-2,4-benzodiazepine-3-thione (V). Reaction of V with 1,2-dibromoethane, chloro-2-propanone, ethyl 2-chloroacetoacetate, ethyl chloroacetate, and ethyl 2-bromohexanoate gave 2,3,5,10-tetrahydrothiazolo[3,2-b][2,4]benzodiazepine (VII) and substituted 5,10-dihydrothiazolo[3,2-b][2,4]benzodiazepines (Villa and b, IX, and X), respectively. Condensation of V with 2-chlorocyclohexanone and 3-bromothiochroman-4-one afforded 1,2,3,4,7,12-hexahydrobenzothiazolo[3,2-b][2,4]benzodiazepine (XII) and 9,14-dihydro-6H-[1]benzothiopyrano[4′,3′:4,5]thiazolo[3,2-b][2,4]benzodiazepine(XIll). None of the compounds possessed appreciable biological activity.  相似文献   

16.
An efficient one‐pot access for the synthesis of the previously unreported tetracyclic fused pyrimido‐[4″,5″:4′,5′]thieno[3′,2′:4,5]thieno[3,2‐d]pyrimidine ( 3 ) and 1,2,3‐triazine[4″,5″:4′,5′]thieno‐[3′,2′:4,5]thieno‐[3,2‐d]‐1,2,3‐triazine ( 5 ) heteroaromatic nitrogen ligands is described. The title compounds 3 and 5 were obtained from 3,4‐diaminothieno[2,3‐b]thiophene‐2,5‐dicarbonitrile and phosgeniminium chloride and sodium nitrite/HCl, respectively. Substituted condensed thieno[2,3‐b]thiophene derivatives 4 and 6 were synthesized by nucleophilic displacement of the chloroderivatives 3 and 5 .  相似文献   

17.
Derivatives of two new molecular structures, namely, 7,8-dihydro-6H,10H-[1,2,5]thiadiazolo[3′,4′:4,5]pyrimido[2,1-b][1,3]thiazin-10-one and 6,7-dihydro-9H-thiazolo[3,2-a][1,2,5]thiadiazolo[3,4-d][pyrimidin-9-one, and derivatives of N-substituted sulfamic acid, namely, (8-amino-3,4-dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazin-6-on-7-yl)sulfamic acid and (7-amino-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidin-5-on-6-yl)sulfamic acid, were separated out as by-products in the reduction reaction of 8-amino-3,4-dihydro-7-nitroso-2H,6H-pyrimido[2,1- b][1,3]thiazin-6-one and 7-amino-2,3-dihydro-6-nitroso-5H-thiazolo[3,2-a]pyrimidin-5-one derivatives, respectively, with sodium hydrosulfite. A mechanism of reaction, which hypothesizes the action of sodium hydrosulfite in an asymmetic form, is proposed. The results of single-crystal X-ray investigation on 7,8-dihydro-6H,10H-[1,2,5]thiadiazolo[3′,4′:4,5]pyrimido[2,1-b][1,3]thiazin-10-one (R = 0.032 for 863 reflections) and (8-amino-3,4-dihydro-2H,6H-pyrimido[2,1-b]- [1,3]thiazin-6-on-7-yl)sulfamic acid, sodium salt (R = 0.028 for 3507 reflections) are reported.  相似文献   

18.
Photochemistry of tricyclic β, γ-γ′, δ′-unsaturated ketones The easily available tricyclic ketone 1 (cf. Scheme 1) with a homotwistane skeleton yielded upon direct irradiation the cyclobutanone derivative 3 by a 1,3-acyl shift. Further irradiation converted 3 into the tricyclic hydrocarbon 4 . However, acetone sensitized irradiation of 1 gave the tetracyclic ketone 5 by an oxa-di-π-methane rearrangement. Again with acetone as a sensitizer the ketone 5 was quantitatively converted to the pentacyclic ketone 6 . The conversion 5 → 6 represents a novel photochemical 1,4-acyl shift. The possible mechanisms are discussed (see Scheme 7). The tricyclic ketone 2 underwent similar types of photoreactions as 1 (Scheme 2). Unlike 5 the tetracyclic ketone 9 did not undergo a photochemical 1,4-acyl shift. The epoxides 10 and 14 derived from the ketones 1 and 2 , respectively, underwent a 1,3-acyl shift upon irradiation followed by decarbonylation, and the oxa-di-π-methane rearrangement (Schemes 3 and 4). The diketone 18 derived from 1 behaved in the same way (Scheme 5). The tetracyclic diketone 21 cyclized very easily to the internal aldol product 22 under the influence of traces of base (Scheme 5). Upon irradiation the γ, δ-unsaturated ketone 24 underwent only the Norrish type I cleavage to yield the aldehyde 25 (Scheme 6).  相似文献   

19.
A regioselective synthesis of novel pyrazolo[1,5‐a]pyrimidines, pyrazolo[1,5‐a]quinazoline and pyrimido[4′,5′:3,4]pyrazolo[1,5‐a]pyrimidines incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide 3 with appropriate 1,3‐biselectrophilic reagents namely, β‐diketones, enaminones, and α,β‐unsaturated cyclic ketone. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

20.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione ( 1 ) with two equivalents of some 6‐aminouracils (or 6‐amino‐2‐thiouracil) generates spirocyclic tetrahydrobenzo[if]quinolizines ( 7 ). The one‐pot, three‐component reaction of amido ketone ( 1 ) with 6‐aminouracil (or 6‐amino‐2‐thiouracil) and a cyclic six‐membered 1,3‐diketone produces spirocyclic tetrahydropyrrolo[3,2,1‐ij]quinolinones ( 15 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号