首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete isomerization of the molecular ion of r-2-deuterio-2, cis-4,cis-6-trimethyl-1,3,5-trithian into equal proportions of 3, 5- and 6-d1-3,5,6-trimethyl-1,2,4-trithian molecular ions adequately accounts for all major fragmentations of the former. These fragmentations are losses of C4H8, C2H4S, S2H˙, C4H8S and C2H4S2. Similar rearrangements are proposed for other 1,3,5-trithans and 1,3-dithians.  相似文献   

2.
The potential energy profiles for the mutual conversion of the isomeric molecular ions [C5H6O]+? of 2‐methylfuran, 3‐methylfuran and 4H‐pyran and the fragmentations that lead to [C5H5O]+ ions were obtained from calculations at the B3LYP/6‐311G + + (3df,3pd)//B3LYP/6‐31G(d,p) level of theory. The various competing unimolecular processes were characterized by their RRKM microcanonical rate coefficients, k(E), using the sets of reactant and transition state frequencies and the kinetic barriers obtained from the density functional method. In either a high‐ or a low‐energy regime, the pyrylium ion [C5H5O]+ is generated directly from the 4H‐pyran molecular ion by a simple cleavage. In contrast, in the metastable kinetic window, the molecular ions of methylfurans irreversibly isomerize to a mixture of interconverting structures before dissociation, which includes the 2H‐ and 3H‐pyran ions. The hydrogen atoms attached to saturated carbons of the pyran rings are very stabilizing at the position 2, but they are very labile at position 3 and can be shifted to adjacent positions. Once 4H‐pyran ion has been formed, the C? H bond cleavage begins before any hydrogen shift occurs. According to our calculation, there would not be complete H scrambling preceding the dissociation of the molecular ions [C5H6O]+?. On the other hand, as the internal energy of the 2‐methylfuran molecular ion increases, H? loss can become more important. These results agree with the available experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In the electron impact mass spectra of azomethines derived from various substituted aromatic aldehydes and diarninodicyanoethene the superposition of two ortho effects concurring with the azomethine group is apparent: one involving the amino group of the diaminodicyanoethene part accounts for the cyclization to [C5H3N4]+ ions and the other involving ortho substituents of the benzylidene part which can interact with the azomethine moiety is responsible for specific fragment ions, suppressing the typical fragmentations of azomethines. The ortho effect was studied for the o-nitro derivative by labelling experiments, analysis of metastable transitions and collisional activation comparing model ions, demonstrating that the specific [M-H2O]+˙ and [C7H5NO2]+˙ ions are the result of cyclization processes.  相似文献   

4.
Metastable peak characteristics, ionization and appearance energy data and isotopic labelling experiments have been applied to a study of the fragmentation behaviour of the molecular ions of the isomeric C4H6O2C acids, cis and trans-crotonic acids, methacrylic acid, butenoic acid and cyclopropane carboxylic acid. Prior to the losses of H2O and CH3, all the metastable molecular ions rearrange to [cis-crotonic acid]+? ions. Loss of H2O, which generates a composite metastable peak, is proposed to yield vinylketene and/or cyclobutenone molecular ions. Detailed mechanisms are presented for the isomerizations of the various molecular ions and for the above fragmentations. Ionized 3-butenoic and cyclopropane carboxylic acids display a major loss of CO from their metastable ions, a minor process in the other isomers. The metastable peaks consist of two components and these are ascribed to the formation of propen-1-ol and allyl alcohol as daughter ions. Some comparative data are presented for the isomeric C5H8O2 acids, tiglic acid, angelic acid and senecioic acid.  相似文献   

5.
The electron impact mass spectra of eight polynuclear beryllium complexes Be4O(RCO2)6 (R?H, CH3, C2H5) and Be4O(RCO2)5OR′ (R?CH3, R′?H, CH3, C2H5, C3H7; R?C2H5, R′?C2H5) are reported. The major fragmentations involve the elimination of (RCO)2O (RCOOR′) or Be(RCO2)2 (Be(RCO2)OR′) from the ions [M? L]+ and of {(R? H)CO}, (R′? H), H2O and BeO from the lighter ions. The fragmentation patterns are practically independent of the organic groups present and can be rationalized by stereochemical considerations.  相似文献   

6.
Backbone z-type fragment ions formed by electron-transfer dissociation (ETD) of doubly protonated peptides AAHAL, AHDAL, and AHADL were subjected to collisional activation and their dissociation products were studied by ETD-CID-MS3 and MS4. Electron structure theory calculations were performed to elucidate ion structures and reaction mechanisms. All z ions showed competitive eliminations of C3H7 and C4H8 from the C-terminal Leu side chain. The energetics and kinetics of these dissociations were studied computationally for the z4 ion from AAHAL, and optimized structures are reported for several intermediates and transition states. RRKM calculations on the combined B3LYP and PMP2/6-311++G(2d,p) potential energy surface provided unimolecular rate constants that closely reproduced the experimental branching ratios for C3H7 and C4H8 eliminations. Mechanisms were also studied for the loss of CO2 from z ions generated by ETD of AHDAL and AHADL and for a specific radical-induced Asp-Cα-CO backbone cleavage. CID of the z ions under study did not produce any fragment ions that would indicate cascade backbone dissociations triggered by the radical sites. In contrast, the majority of backbone dissociations occurred at bonds that were remote from the radical sites (spin-remote dissociations) and were triggered by proton migrations that were analogous to those considered for standard peptide ion fragmentations.  相似文献   

7.
4-Methoxymethylbenzaldimmonium ions (a) and the corresponding N-methylated ions (b) and N,N-dimethylated ions (c) were easily generated in the ion source by electron impact-induced dissociation from 1-(4-methoxymethylphenyl)ethylamine and its N-methylated derivatives. The spontaneous fragmentations of metastable ions a-c and of specifically deuterated derivatives in the second field-free region of a VG ZAB-2F mass spectrometer were studied by mass-analysed ion kinetic energy Spectrometry. The formation of an amino-p-quinodimethane radical cation by loss of the methoxy group is observed for all ions. In the case of a and b carrying at least one proton at the immonium group, competing fragmentations are the loss of CH2O and CH3OH, respectively, and the formation of ions CH3OCH2 +, m/z 45, and C7H7 +, m/z 91. Deuterium-labelling experiments indicated the migration of a proton from the protonated imino group of a and b to the aromatic ring followed by the loss of methanol from the methoxymethyl side-chain or protolysis of the bond to either side-chain to form ion-neutral complexes, in close analogy with the reactions of the corresponding protonated benzaldehydes. The intermediate ion-neutral complexes dissociate eventually by internal ion-neutral reactions resulting in the loss of CH2 O and the formation of C7H7 +, respectively.  相似文献   

8.
The chemistry of glycerol subjected to a high-energy particle beam was explored by studying the mass spectral fragmentation characteristics of gas-phase protonated glycerol and its oligomers by using tandem mass spectrometry. Both unimolecular metastable and collision-induced dissociation reactions were studied. Collision activation of protonated glycerol results in elimiation of H2O and CH3OH molecules. The resulting ions undergo further fragmentations. The origin of several fragment ions was established by obtaining their product and precursor ion spectra. Corresponding data for the deuterated analogs support those results. The structures of the fragment ions of compositions [C3H5O]+, [C2H5O]+, [C2H4O]+. and [C2H3O]+ derived from protonated glycerol were also identified. Proton-bound glycerol oligomers fragment principally via loss of neutral glycerol molecules. Dissociation of mixed clusters of glycerol and deuterated glycerol displays normal secondary isotope effects.  相似文献   

9.
The reactions of metastable [C5H10O]+ ˙ radical cations produced by ionization of 4-penten-1-ol are reported and discussed. These [C5H10O]+ ˙ species undergo mainly ethyl radical loss, with smaller contributions of methyl radical and water expulsion. 2H-Labelling studies reveal different specificities of hydrogen selection in these three fragmentations. The behaviour of these [C5H10O]+ ˙ ions is compared to those reported previously for isomeric radical cations containing linear alkenyl chains and a terminal hydroxyl group.  相似文献   

10.
The field ionization (FI) mass spectra of n-heptanal and a series of deuterium labeled analogs have been studied, with the objectives of initiating systematic investigations of reaction mechanisms of FI produced ions and to permit comprison with those found for other ionization processes. It is now recognized that FI ions have: (a) lower average internal energies and (b) shorter residence times than similar ions generated by electron-impact (EI), and the possibility exists of H/D-randomization occuring in ions formed by desorption from the emitter, by unimolecular decomposition close to the emitter and by either ‘fast’ or ‘slow’ metastable decompositions. In this study only the peak shifts of normal ions could be utilized; accurate mass measurements of all major ions revealed elemental compositions similar to EI. A site-specific McLafferty rearrangement gave the base peak at m/e 44 ([C2H4O]+.), although the apparently complementary ion at m/e 70 ([C5H10]+.) arose in a less specific process. Ions at m/e 43 ([C3H7]+) and 71 ([C5H11]+ 80%; [C4H7O]+ 20%) were apparantly generated without significant H/D-scrambling. Of special interest was the observation of the rearrangement ion at m/e 86 ([C5H10O]+.) caused by loss of C-2 and C-3 as C2H4, as found for EI. It is concluded that at least in this system, decomposing molecular ions formed: (a) in the gas phase extremely close to the emitter and/or (b) on the emitter surface, have lifetimes sufficiently short to preclude complete H/D randomization. The results also provide evidence for common fragmentation mechanisms for heptanal molecular ions at both the low end and the high end of the energy distribution.  相似文献   

11.
Complexations of crown ethers with alkali metal ions have been investigated extensively by FAB mass spectrometry over the past decade, but very little attention has been paid to reactions of crown ethers with other classes of metal ions such as alkaline earth metal ions, transition metal ions and aluminum ions. Although fast atom bombardment ionization mass spectrometry has proven to be a rapid and convenient method to determine the binding interactions of crown ethers with metal ions, problems in reliabilities for quantitative measurements of” binding strength for the host-guest complexes have been described in the literature. Thus, in this paper, applications of FAB/MS for investigating the complexation of crown ethers with various classes of metal ions is discussed. Extensive fragmentations for neutral losses such as C2H4O or C2H4 molecules from the host-guest complexes could be observed. The reason is attributed to the energetic bombardment processes of FAB occuring in the formation of these complexes. Complexes of cyclen with metal ions also show neutral losses of C2H4NH molecules leading to fragment ions. Transition metal ions usually form (Crown + MCl)+ type of ions, alkaline earth metal ions can form both (Crown + MCl)+ and (Crown + MOH)+ type of ions. But for aluminum ions, only (Crown + Al(OH)2)+ type of ions could he observed.  相似文献   

12.
Experiments on a variety of isomeric [C3H8O]+? and [C4H10O]+? ions have failed to produce direct evidence for the involvement of the complex ions [C2H4+?/HOCH3] and [C2H4+?/HOC2H5]. For the isomers studied, the rearrangements prior to their dissociation of lowest energy requirement (loss of H2O and C2H5?, respectively) are proposed to involve distonic and ylid ions.  相似文献   

13.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

14.
The potential energy profiles for the fragmentations that lead to [C5H5O]+ and [C4H6]+? ions from the molecular ions [C5H6O]+? of E‐2,4‐pentadienal were obtained from calculations at the UB3LYP/6‐311G + + (3df,3pd)//UB3LYP/6‐31G(d,p) level of theory. Kinetic barriers and harmonic frequencies obtained by the density functional method were then employed in Rice–Ramsperger–Kassel–Marcus calculations of individual rate coefficients for a large number of reaction steps. The pre‐equilibrium and rate‐controlling step approximations were applied to different regions of the complex potential energy surface, allowing the overall rate of decomposition to be calculated and discriminated between three rival pathways: C? H bond cleavage, decarbonylation and cyclization. These processes should have to compete for an equilibrated mixture of four conformers of the E‐2,4‐pentadienal ions. The direct dissociation, however, can only become important in the high‐energy regime. In contrast, loss of CO and cyclization are observable processes in the metastable kinetic window. The former involves a slow 1,2‐hydrogen shift from the carbonyl group that is immediately followed by the formation of an ion‐neutral complex which, in turn, decomposes rapidly to the strans‐1,3‐butadiene ion [C4H6]+?. The predominating metastable channel is the second one, that is, a multi‐step ring closure which starts with a rate‐limiting cistrans isomerization. This process yields a mixture of interconverting pyran ions that dissociates to the pyrylium ions [C5H5O]+. These results can be used to rationalize the CID mass spectrum of E‐2,4‐pentadienal in a low‐energy regime. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The dissociative spectrum of the [C6H5S]+ ion derived by charge inversion from [C6H5S]?, shows a variety of fragmentations including the competitive losses of H?, C3H4 and the formation of [CHS]+. The spectrum of a deuteriated derivative shows that these three processes are preceded or accompanied by H/D scrambling. The corresponding [C6H5O]+ species also undergoes hydrogen scrambling prior to fragmentation. In marked contrast, the ion [p-MeC6H4S]+ does not undergo hydrogen randomization between the methyl and aryl groups, and positional integrity is retained during fragmentation. These results are compared with the properties of the same ions produced by conventional ionization.  相似文献   

16.
Collision-induced dissociation of the ions [ArS]?, [ArSO]? and [ArSO2]? has uncovered a rich and varied ion chemistry. The major fragmentations of [ArS]? are complex and occur without prior ring hydrogen scrambling: for example, [C6H5S]?→[C2HS]? and [HS]?; [p-CD3C6H4S]?→[C6H4S]?˙, [CD3C4S]? and [C2HS]?. In contrast, all decompositions of [C6H5CH2S]? are preceded by specific benzylic and phenyl hydrogen interchange reactions. [ArSO2]? and [ArSO2]? ions undergo rearrangement, e.g. [C6H5SO]?→[C6H5O]? and [C6H5S]?; [C6H5SO2]?→[C6H5O] ?. The ion [C6H5CH2SO]? eliminates water, this decomposition is preceded by benzylic and phenyl hydrogen exchange.  相似文献   

17.
Cyclic polysulfides isolated from higher plants, model compounds and their electron impact induced fragment ions have been investigated by various mass spectrometric methods. These species represent three sets of sulfur compounds: C3H6Sx (x=1?6), C2H4Sx (x=1?5) and CH2Sx (x=1?4). Three general fragmentation mechanisms are discussed using metastable transitions: (1) the unimolecular loss of structural parts (CH2S, CH2 and Sx); (2) fragmentations which involve ring opening reactions, hydrogen migrations and recyclizations of the product ions ([M? CH3]+, [M? CH3S]+, [M? SH]+ and [M? CS2]); and (3) complete rearrangements preceding the fragmentations ([M? S2H]+ and [M? C2H4]). The cyclic structures of [M] and of specific fragment ions have been investigated by comparing the collisional activation spectra of model ions. On the basis of these results the cyclic ions decompose via linear intermediates and then recyclizations of the product ions occur. The stabilities of the fragment ions have been determined by electron efficiency vs electron energy curves.  相似文献   

18.
Metastable ion peak shapes, dimensions and relative abundances have been measured for the three fragmentations [C3H6]+· → [C3H4]+· + H2, [C3H6]+· → [C3H5]+ + H· and [C3H6]+· → [C3H3]+ + H2 + H·. [C3H6]+· ions were derived from propene, cyclopropane, tetrahydrofuran, cyclohexanone, 2-methyl but-1-ene and cis-pent-2-ene. Activation energies for these fragmentations have been evaluated. Three daughter ion dissociations ([C3H5]+ → [C3H3]+ + H2, [C3H5]+ → [C3H4]+· + H· and [C3H4]+· → [C3H3]+ + H·) have been similarly examined. Ion structures have been determined and the metastable energy releases have been correlated with the thermochemical data. It is concluded that the molecular ions of propene and cyclopropane become structurally indistinguishable prior to fragmentation and that differences in their metastable ion characteristics can be ascribed wholly to internal energy differences; the latter can be correlated with the photoelectron spectra of the isomers. The pathway for the consecutive fragmentation which generates the metastable ion peak (m/e 42 → m/e.39) has been shown to be It is likewise concluded that fragmentating [C3H6]+· ions generated from the various precursor molecules are also structurally indistinguishable and cannot be classified with either molecular ion of the isomeric C3H6 hydrocarbons.  相似文献   

19.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

20.
Water elimination from ionized n-butanol reflects near randomization of all hydrogens in ions decomposing after ~10?5s. This probably takes place in ion-neutral complexes by formation of a cyclobutane ion–H2O complex and/or rearrangement within [C4H8]+˙ in open-chain [C4H8+˙? H2O] complexes, in either case accompanied by hydrogen exchange between water and open-chain hydrocarbon moieties. Extensive hydrogen rearrangements in which restraints on conventional transition-state ring size have little apparent influence may generally be ion–neutral complex-mediated processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号