首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The synthesis is reported of nine unsymmetrical, meso-substituted porphyrins. Among the compounds prepared are the following 5-(R)-10,15,20-tri-p-tolylporphyrins; R = 2,6-dinitrophenyl, 4-hydroxy-3-ethoxy-phenyl, 4-hydroxy-3-methoxy-5-nitrophenyl, 5-hydroxy-2-nitrophenyl and 4-hydroxy-3-nitrophenyl. Other porphyrins reported include 5-(2-(1-butoxy)phenyl)-15-(2-nitrophenyl)-10-15-di-p-tolylporphyrin and the two 5-(R)-10-15,20-tripropylporphyrins in which R = 2-nitrophenyl and 2-hydroxyphenyl. The disubstituted porphyrins offer a rational route to the synthesis of difunctional “tailed-porphyrins”.  相似文献   

2.
A newly synthetized series of N-phenacyl derivatives of 2-mercaptobenzoxazole, including analogues of 5-bromo- and 5,7-dibromobenzoxazole, were screened against Candida strains and the action mechanism was evaluated. 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanone (5d), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichloro-phenyl)ethanone (5i), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,4,6-trichlorophenyl)ethanone (5k) and 2-[(5-bromo-1,3-benzoxazol-2-yl)sulfanyl]-1-phenylethanone (6a) showed anti-C. albicans SC5314 activity, where 5d displayed MICT = 16 µg/mL (%R = 100) and a weak anti-proliferative activity against the clinical strains: C. albicans resistant to azoles (Itr and Flu) and C. glabrata. Derivatives 5k and 6a displayed MICP = 16 µg/mL and %R = 64.2 ± 10.6, %R = 88.0 ± 9.7, respectively, against the C. albicans isolate. Derivative 5i was the most active against C. glabrata (%R = 53.0 ± 3.5 at 16 µg/mL). Benzoxazoles displayed no MIC against C. glabrata. Benzoxazoles showed a pleiotropic action mode: (1) the total sterols content was perturbed; (2) 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(3,4-dichlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichlorophenyl)ethanol (8h–i) at the lowest fungistatic conc. inhibited the efflux of the Rho123 tracker during the membrane transport process; (3) mitochondrial respiration was affected/inhibited by the benzoxazoles: 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-chlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanol 8c–d and 8i. Benzoxazoles showed comparable activity to commercially available azoles due to (1) the interaction with exogenous ergosterol, (2) endogenous ergosterol synthesis blocking as well as (3) membrane permeabilizing properties typical of AmB. Benzoxazoles display a broad spectrum of anti-Candida activity and action mode towards the membrane without cross-resistance with AmB; furthermore, they are safe to mammals.  相似文献   

3.
The regioselective reaction of N1-benzyl-N2-(4-nitrophenyl)ethanediamide with dialkyl acetylenedicarboxylates or alkyl propiolates in the presence of triphenylphosphine leads to dialkyl 4-benzylamino-1-(4-nitrophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-2,3-dicarboxylates or alkyl 4-benzylamino-1-(4-nitrophenyl)-2-oxo-5-pyrrolidinecarboxylates in good yields.  相似文献   

4.
Summary. The regioselective reaction of N1-benzyl-N2-(4-nitrophenyl)ethanediamide with dialkyl acetylenedicarboxylates or alkyl propiolates in the presence of triphenylphosphine leads to dialkyl 4-benzylamino-1-(4-nitrophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-2,3-dicarboxylates or alkyl 4-benzylamino-1-(4-nitrophenyl)-2-oxo-5-pyrrolidinecarboxylates in good yields.  相似文献   

5.
The Common 2′ -deoxypyrimidine and -purine nucleosides, thymidine ( 4 ), O4-[2-(4-nitrophenyl)ethyl]-thymidine ( 17 ), 2′-deoxy-N4-[2-(4-nitrophenyl)ethoxycarbonyl]cytidine ( 26 ), 2′-deoxy-N6-[2-(4-nitrophenyl)-ethoxycarbonyl]adenosine- 39 , and 2′-deoxy-N2-[2-(4-nitrophenyl)(ethoxycarbonyl]-O6-[2–4-nitrophenyl)ethyl]-guanosine ( 52 ) were further protected by the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) and the 2-(2,4-dinitrophenyl)ethoxycarbonyl (dnpeoc) group at the OH functions of the sugar moiety to form new partially and fully blocked intermediates for nucleoside and nucleotide syntheses. The corresponding 5′-O-monomethoxytrityl derivatives 5 , 18 , 30 , 40 , and 56 were also used as starting material to synthesize some other intermediates which were not obtained by direct acylations. In the ribonucleoside series, the 5′ -O-monomethoxytrityl derivatives 14 , 36 , 49 , and 63 reacted with 2-(4-nitrophenyl) ethyl chloroformate ( 1 ) to the corresponding 2′,3′-bis-carbonates 15 , 37 , 50 , and 64 which were either detriylated to 16 , 38 , 51 , and 65 , respectively, or converted by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) treatment to the 2′,3′-cyclic carbonates 66 – 69 . The newly synthesized compounds were characterized by elemental analyses and UV and 1H-NMR spectra.  相似文献   

6.
A synthesis is reported for (4R,5R)-and (4S,5S)-4-hydroxymethyl-5-(4-nitrophenyl)oxazolidin-2-ones and (1′R,4R)-and (1′S,4S)-4-[hydroxy(4-nitrophenyl)methyl]oxazolidin-2-ones from (1R,2R)-and (1S,2S)-2-amino-1-(4-nitrophenyl)-1,3-propanediols. The effect of the experimental conditions on the formation of these compounds was studied. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1562–1570, October, 2007.  相似文献   

7.
2-(1H-Pyrazol-1-yl)-4-(4-nitrophenyl)thiazoles 2a and 2b , resulting from the condensation of 2-hydrazino-4-(4-nitrophenyl)thiazole ( 1 ) and acetylacetone and dibenzoylmethane, respectively, were previously [4] misas-signed as 3-(4-nitrophenyl)thiazolo[2,3-c][1,2,4]triazepines 3a and 3b . The assignments were corrected by authentic syntheses of 2a and 2b from 2-chloro-5-(4-nitrophenyl)thiazole ( 6 ) and 3,5-dimethyl-1H-pyrazole and 3,5-diphenyl-1H-pyrazole, respectively. In addition, the mass spectrum of 2a is reported. An apparent ionmolecule reaction produces an ion of significant intensity at m/e 394.  相似文献   

8.
The nucleophilic addition of n-butyl- and benzylamines to 1-(4-nitrophenyl)-5H-pyrrolin-5-one and 1-(4-sulfamoylphenyl)-5H-pyrrolin-2-one at 50°C in an excess of the amines with the formation of N-substituted amides of 3-alkyl(benzyl)amino-4-(4-R-anilino)butyric acids was investigated. The N-substituted amides of 3-arylamino-4-hydroxybutyric and 4-hydroxy-2-butenoic acids were synthesized from 2(5H)-furanone and aromatic amines (1:3) at 180°C. 4-Alkylamino-1-(4-nitrophenyl)pyrrolid-2-ones were obtained in the reaction of 1-(4-nitrophenyl)-5-pyrrolin-2-one with ammonia or aliphatic, alicyclic, and aromatic amines (1:3, 90°C, in DMF).  相似文献   

9.
The 2-(4-nitrophenyl)ethylsulfonyl (npes) group is developed as a new sugar OH-blocking group in the ribonucleoside series. Its cleavage can be performed in a β-eliminating process under aprotic conditions using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the most effective base. Since sulfonates do not show acyl migration, partial protection of 1,2-cis-diol moieties is possible leading to new types of oligonucleotide building blocks. A series of Markiewicz-protected ribonucleosides 1–10 is converted into their 2′-O-[2-(4-nitrophenyl)ethylsulfonyl] derivatives 29–38 in which the 5′-O? Si bond can be cleaved by acid hydrolysis forming 39–45 . Subsequent monomethoxytritylation leads to 46–50 , and desilylation affords the 5′-O-(monomethoxytrityl)-2′-O-[2-(4-nitrophenyl)ethylsulfonyl]ribonucleosides 51–55 . Acid treatment to remove trityl groups do also not harm the npes group (→ 56–58 ). Unambiguous syntheses of fully blocked 2′-O-[2-(4-nitrophenyl)ethylsulfonyl]ribonucleosides 96–102 are achieved from the corresponding 3′-O-(tert-butyl)dimethylsilyl derivatives. Furthermore, various base-protected 5′-O-(monomethoxytrityl)- and 5′-O-(dimethoxytrityl)ribonucleosides, i.e. 59–77 , are treated directly with 2-(4-nitrophenyl)ethylsulfonyl chloride forming in all cases a mixture of the 2′,3′-di-O- and the two possible 2′- and 3′-O-monosulfonates 107–148 which can be separated into the pure components by chromatographic methods. The npes group is more labile towards DBU cleavage than the corresponding base-protecting 2-(4-nitrophenyl)ethyl (npe) and 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) groups allowing selective deblocking which is of great synthetic potential.  相似文献   

10.
The reactions of 6-nitro-2-trifluoromethylchromone with benzylamine, ethanolamine, and aniline afforded 3-benzyl(2-hydroxyethyl,phenyl)amino-4,4,4-trifluoro-1-(2-hydroxy-5-nitrophenyl)but-2-en-1-ones, respectively, whereas the reactions with ethylenediamine and diethylenetriamine gave rise to 5-(2-hydroxy-5-nitrophenyl)-7-trifluoromethyl-2,3-dihydro-1H-1,4-diazepine and 5-(2-hydroxy-5-nitrophenyl)-7-trifluoromethyl-1,4,8-triazabicyclo[5.3.0]dec-4-ene, respectively. Morpholine added at the double bond of 2-trifluoromethyl- and 6-nitro-2-trifluoromethylchromones to form 2-morpholino-2-trifluoromethylchroman-4-one and its 6-nitro-substituted analog, respectively, whereas piperidine reacted only with 2-trifluoromethylchromone to yield 2-piperidino-2-trifluoromethylchroman-4-one.  相似文献   

11.
A reaction of 2-(2-nitrobenzoylmethyl)-1,3-dioxolane ( 3 ) with hydroxylamine, followed by acid catalyzed cyclization, produced 5-(2-nitrophenyl)isoxazole ( 5 ) as the only isolable product, whereas 2-(benzoylmethyl)-1,3-dioxolane ( 9 ) under identical conditions produced a 2.5:1 mixture of 3-phenyl and 5-phenylisoxazoles 10 and 11 . These findings contradict the literature report that β-keto ethyleneacetals on treatment with hydroxylamine produce exclusively 3-substituted isoxazoles. As an additional proof, 3-(2-nitrophenyl)isoxazole ( 8 ) was prepared by an unambiguous method via the nitrile oxide route for comparison. The intermediate obtained on treatment of 2-(2-nitrobenzoylmethyl)-1,3-dioxolane ( 3 ) with hydroxylamine was found to be an isomeric mixture of 5-hydroxy-5-(2-nitrophenyl)-2-isoxazoline ( 4 ) and the syn and anti mono-oximes 19 (at least in solution), either of which could give 5-(2-nitrophenyl)isoxazole ( 5 ) on acid treatment. A mechanistic rationale is provided to explain the anomalous results.  相似文献   

12.
Transformation of the nitromethyl group in 3-(2-aryl-3-nitropropyl)-6,6-dimethyl-6,7-dihydro-1,2-benzoxazol-4(5H)-ones by the Nef reaction gave the corresponding aldehydes. Jones oxidation of the latter afforded carboxylic acids together with oxidative decarboxylation products. The possibility for the construction of heterocyclic fragment on the basis of the formyl or carboxylmethyl group of the resulting 6,7-dihydro-1,2-benzoxazol-4(5H)-one derivatives was studied.  相似文献   

13.
We have studied hydrazinolysis of (4S,5S)-3-benzyl-4-hydroxymethyl-5-(4-nitrophenyl)oxazolidine, (1R,4S,5S)-1-(4-nitrophenyl)-1-aza-3,7-dioxabicyclo[3,3,0]octane, and (1R,4S,5S)-1-benzyl-4-(4-nitrophenyl)-1-azonia-3,7-dioxabicyclo[3,3,0]octane. We have shown that neutral compounds are decomposed with opening of the oxazolidine ring, while quaternary ammonium salts react with hydrazine in several directions.  相似文献   

14.
2′–5′ Adenylate trimers 41–44 carrying the (tert-butyl)dimethylsilyl (tbds) group at the 3′-OH position of various sugar moieties were synthesized via the phosphoramidite method. The use of the (tert-butyloxy)carbonyl (boc) and 2-(4-nitrophenyl)ethylsulfonyl (npes) groups for 2′-OH protection in neighbourhood to the 3′-O-tbds residue was compared during the synthesis of the target trimers. For other functional positions, the use of the 2-(4-nitrophenyl)ethyl (npe) and 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) blocking groups were favoured.  相似文献   

15.
The structure of (4S,5S)-4-[(dichloroacetoxy)methyl]-5-(4-nitrophenyl)-2-oxazolidinone has been determined by crystal structure investigation.  相似文献   

16.
A series of new base-protected and 5′-O-(4-monomethoxytrityl)- or 5′-O-(4,4′-dimethoxytrityl)-substituted 3′-(2-cyanoethyl diisopropylphosphoramidites) and 3′-[2-(4-nitrophenyl)ethyl diisopropylphosphoramidites] 52 – 66 and 67 – 82 , respectively, are prepared as potential building blocks for oligonucleotide synthesis (see Scheme). Thus, 3′,5′-di-O-acyl- and N 2,3′-O,5′-O-triacyl-2′-deoxyguanosines can easily be converted into the corresponding O6-alkyl derivatives 6 , 8 , 10 , 12 , 14 , and 16 by a Mitsunobu reaction using the appropriate alcohol. Mild hydrolysis removes the acyl groups from the sugar moiety (→ 9 , 11 , 13 , 15 , and 19 (via 18 ), resp.) which can then be tritylated (→ 38 – 42 ) and phosphitylated (→ 57 – 61 ) in the usual manner. N 2-[2-(4-nitrophenyl)ethoxycarbonyl]-substituted and N 2-[2-(4-nitrophenyl)ethoxycarbonyl]-O6-[2-(4-nitrophenyl)ethyl]-substituted 2′-deoxyguanosines 5 and 7 , respectively, are synthesized as new starting materials for tritylation (→ 28 , 35 , and 37 ) and phosphitylation (→ 54 , 56 , 70 , and 78 ). Various O4-alkylthymidines (see 20 – 24 ) are also converted to their 5′-O-dimethoxytrityl derivatives (see 43 – 47) and the corresponding phosphoramidites (see 62 – 66 and 79 – 82 ).  相似文献   

17.
Intensive studies on the diazomethane methylation of the common ribonucleosides uridine, cytidine, adenosine, and guanosine and its derivatives were performed to obtain preferentially the 2′-O-methyl isomers. Methylation of 5′-O-(monomethoxytrityl)-N2-(4-nitrophenyl)ethoxycarbonyl-O6-[2-(4-nitrophenyl)ethyl]-guanosine ( 1 ) with diazomethane resulted in an almost quantitative yield of the 2′- and 3′-O-methyl isomers which could be separated by simple silica-gel flash chromatography (Scheme 1). Adenosine, cytidine, and uridine were methylated with diazomethane with and without protection of the 5′ -O-position by a mono- or dimethoxytrityl group and the aglycone moiety of adenosine and cytidine by the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group (Schemes 2–4). Attempts to increase the formation of the 2′-O-methyl isomer as much as possible were based upon various solvents, temperatures, catalysts, and concentration of the catalysts during the methylation reaction.  相似文献   

18.
5,5'-(4-Nitrobenzylidene)bis(2-thiobarbituric) acid and 5-(4-nitrophenyl)-2,8-dithioxo-5,7,8,9-tetrahydro-2H-pyrano[2,3-d:6,5-d']dipyrimidine-4,6(1H,3H)-dione, similar to unsubstituted 2-thiobarbituric acid, readily react with haloacetic acids and their esters to form regioselectively the S-alkylation products. The alternative routes fo 5,5'-(4-nitrobenzylidene)bis[(4-hydroxy-6-oxo-1,6-dihydropyrimidine-5,2-diyl)sulfanyl]diacetic acids, based on condensation of 4,6-dihydroxypyrimidin-2-ylthioacetic acid with carbonyl compounds followed by cyclodehydration to [(5-(4-nitrophenyl)-4,6-dioxo-3,5,6,7-tetrahydro-4H-pyrano[2,3-d:6,5-d']dipyrimidine-2,8-diyl)di(sulfanyl)]diacetic acid derivatives, are less efficient. Alkylation of 2-thiobarbituric acid with ethyl bromoacetate in ethanol in the presence of alkali yields 5-(2-oxo-2,5-dihydro-1,3-thiazol-4-yl)-2-thiobarbituric acid.  相似文献   

19.
Reactions of 4-aminofurazan-3-carboxylic acid iminoester with o-aminophenol and ethylenediamine give rise respectively to 4-(1,3-benzoxazol-2-yl)- and 1-(4,5-dihydro-1H-imidazol-2-yl)-1,2,5-oxadiazol-3-amines, with aminoethanol arises 2-[(Z)-1-amino-1-(4-amino-1,2,5-oxadiazol-3-yl)methylideneamino]-1-ethanol. Treating of 3-amino-4-(1H-benzo[d]imidazol-2-yl)-1,2,5-oxadiazole with triethyl orthoformate in acetic anhydride yielded benzo[4,5]imidazo[1,2-c][1,2,5]oxadiazolo[3,4-e]pyrimidine, and alkylation with haloalkanes furnished 3-amino-4-(1-R-benzo[d]imidazol-2-yl)-1,2,5-oxadiazoles.  相似文献   

20.
2-(1-Alkoxyiminoalkyl)cyclohexane-1,3-diones undergo at heating Beckmann rearrangement to give 6,7-dihydro-1,3-benzoxazol-4(5H)-one derivatives that under treatment with amines in acid medium are converted into 1,5,6,7-tetrahydro-4H-benzimidazol-4-ones. In reaction of 6,7-dihydro-1,3-benzoxazol-4(5H)-ones with O-ethylhydroxylamine 4-ethoxyimino derivatives were obtained that treated with hydrochloric acid formed the corresponding N-ethoxybenzimidazolones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号