首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a numerical procedure to eliminate internal nodes from elements designed to approximate incompressible flow problems. We compare six elements in academic and industrial like flow problem and we discuss their relative qualities. A surprising conclusion is that richer elements may behave less well than simple ones if a good enforcement of incompressibility is not maintained.  相似文献   

2.
This paper discusses the calculation of quasi-three-dimensional incompressible viscous flow by FEM. The Reynolds-averaged Navier-Stokes equations are solved in curvilinear co-ordinates by the reduced integration and penalty method (RIP). Streamline upwind artificial viscosity (SUAV) and the Baldwin-Lomax algebraic model of turbulence are used. Time discretization is by the general implicit θ-method.  相似文献   

3.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

4.
The problem of establishing appropriate conditions for the vorticity transport equation is considered. It is shown that, in viscous incompressible flows, the boundary conditions on the velocity imply conditions of an integral type on the vorticity. These conditions determine a projection of the vorticity field on the linear manifold of the harmonic vector fields. Some computational consequences of the above result in two-dimensional calculations by means of the nonprimitive variables, stream function and vorticity, are examined. As an example of the application of the discrete analogue of the projection conditions, numerical solutions of the driven cavity problem are reported.  相似文献   

5.
The discretization of the incompressible Navier-Stokes equation on boundary-fitted curvilinear grids is considered. The discretization is based on a staggered grid arrangement and the Navier-;Stokes equations in tensor formulation including Christoffel symbols. It is shown that discretization accuracy is much enhanced by choosing the velocity variables in a special way. The time-dependent equations are solved by a pressure-correction method in combination with a GMRES method. Special attention is paid to the discretization of several types of boundary conditions. It is shown that fairly non-smooth grids may be used using our approach.  相似文献   

6.
In this paper we consider symmetric and antisymmetric periodic boundary conditions for flows governed by the incompressible Navier-Stokes equations. Classical periodic boundary conditions are studied as well as symmetric and antisymmetric periodic boundary conditions in which there is a pressure difference between inlet and outlet. The implementation of this type of boundary conditions in a finite element code using the penalty function formulation is treated and also the implementation in a finite volume code based on pressure correction. The methods are demonstrated by computation of a flow through a staggered tube bundle.  相似文献   

7.
In this paper the development and behaviour of a new finite element algorithm for viscous incompressible flow is presented. The stability and background theory are discussed and the numerical performance is considered for some benchmark problems. The Taylor–Galerkin approach naturally leads to a time-stepping algorithm which is shown to perform well for a wide range of Reynolds numbers (1 ? Re ? 400).
  • 1 A conventional definition for Re is assumed.
  • Various modifications to the algorithm are investigated, particularly with respect to their effects on stability and accuracy.  相似文献   

    8.
    Within multivariant elements, which have restricted degrees of freedom at some nodes, different velocity components have different variations. Shape functions for the multivariant elements Q Po and R Po are developed. With such shape functions the value of a velocity component within a multivariant element is shown to depend upon all the independent components of velocity at the nodes of the element. The use of the Q1 P0 element to simulate flows with discontinuous boundary conditions generated disturbance throughout the flow domain, giving erroneous pressure and velocity distributions. The Q Po element restricted the disturbance due to such discontinuities to a small region near the singular points, whereas the P Po element completely eliminated the fluctuations. Flows with discontinuous boundary conditions were simulated with reasonable accuracy by partially relaxing the no-slip condition on the Q1 Po elements near the singular points.  相似文献   

    9.
    The three-dimensional Navier-Stokes equations for viscous incompressible fluids are discretized on staggered or non-staggered grids. The system of finite-difference equations is solved by a multi-grid method. The method and some possible sources of difficulties and their remedies are described. The numerical algorithm has been applied to the computations of flows in ducts for a range of Reynolds numbers up to 2000. As outflow boundary conditions, either the fully developed flow profile (Dirichlet condition) or parabolic conditions have been applied. The multi-grid method has a fast rate of convergence (with both types of boundary conditions), and it is not sensitive to the number of mesh points and the Reynolds number. The numerical solution, using parabolic boundary conditions, is insensitive to the location of the outflow boundary, even for large Reynolds numbers, in contrast to the solution with Dirichlet boundary conditions.  相似文献   

    10.
    The spurious pressures and ostensibly acceptable velocities which sometimes result from certain FEM approximate solutions of the incompressible Navier–Stokes equations are explained in detail. The concept of pressure modes, physical and spurious, pure and impure, is introduced and their effects on discretized solutions is analysed, in the context of both mixed interpolation and penalty approaches. Pressure filtering schemes, which are capable of recovering useful pressures from otherwise polluted numerical results, are developed for two particular elements in two-dimensions and one element in three-dimensions. Implications regarding the effect of spurious pressure modes on accuracy and ultimate convergence with mesh refinement are discussed and a list of unanswered questions presented. Sufficient numerical examples are discussed to corroborate the theory presented herein.  相似文献   

    11.
    The spurious pressures and ostensibly acceptable velocities which sometimes result from certain FEM approximate solutions of the incompressible Navier-Stokes equations are explained in detail. The concept of pressure modes, physical and spurious, pure and impure, is introduced and their effects on discretized solutions is analysed, in the context of mixed interpolation and penalty approaches. Pressure filtering schemes, which are capable of recovering useful pressures from otherwise polluted numerical results, are developed for two particular elements in two-dimensions and one element in three-dimensions. The automatic pressure filter associated with the penalty method is also explained. Implications regarding the effect of spurious pressure modes on accuracy and ultimate convergence with mesh refinement are discussed and a list of unanswered questions presented. Sufficient numerical examples are discussed to corroborate the theory presented herein.  相似文献   

    12.
    The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible structures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incompressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen’s analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical instability issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows.  相似文献   

    13.
    We consider an optimal control problem of fluids flow. The fluid motion is governed by the incompressible time-dependent Navier-Stokes equations. A new optimal control formulation for the reduction and possibly extinction of vortices is proposed. A cost functional based on a local dynamical systems characterization of vortices is investigated. The resulting functional is a non-convex function of the velocity gradient tensor. The optimality system describing first order necessary optimality conditions is derived. The gradient and the second derivative of the cost functional with respect to the distributed control are established.  相似文献   

    14.
    This paper addresses the spin-up from rest of a free-surface fluid confined in a cylindrical container with a semicircular cross-section. The flow in the various stages of the spin-up process has been calculated numerically by using the finite-volume technique on a three-dimensional grid. Local grid refinement was applied in order to capture the effects of the boundary layer at the lateral boundaries and of the Ekman layer at the bottom. The numerical results agree very well with laboratory observations.  相似文献   

    15.
    A brief review of the computation of incompressible turbulent flow in complex geometries is given. A 2D finite volume method for the calculation of turbulent flow in general curvilinear co-ordinates is described. This method is based on a staggered grid arrangement and the contravariant flux componets are chosen as primitive variables. Turbulence is modelled either by the standard k–ε model or by a k–ε model based on RNG theory. Convection is approximated with central differences for the mean flow quantities and a TVD-type MUSCL scheme for the turbulence equations. The sensitivity of the method to the grid properties is investigated. An application of this method to a complex turbulent flow is presented. The results of computations are compared with experimental data and other numerical solutions and are found to be satisfactory.  相似文献   

    16.
    A numerical method for computing high-Re laminar steady flows is presented. The incompressible Navier-Stokes equations are expressed in terms of vorticity-velocity variables, discretized in space by finite differences on a staggered grid and advanced in time by a scalar alternating direction implicit (ADI) procedure, which allows a fully vectorized computer code. The accuracy and efficiency of the present formulation are discussed in comparison with the standard ω-ψ and u, v, P forms. Numerical results are presented for two test cases: the driven cavity at Re up to 5000 and the backward-facing step at Re up to 800.  相似文献   

    17.
    The streamfunction-vorticity equations for incompressible two-dimensional flows are uncoupled and solved in sequence by the finite element method. The vorticity at no-slip boundaries is evaluated in the framework of the streamfunction equation. The resulting scheme achieves convergence, even for very high values of the Reynolds number, without the traditional need for upwinding. The stability and accuracy of the approach are demonstrated by the solution of two well-known benchmark problems: flow in a lid-driven cavity at Re ? 10,000 and flow over a backward-facing step at Re = 800.  相似文献   

    18.
    The incompressible, two-dimensional Navier-Stokes equations are solved by the finite element method (FEM) using a novel stream function/vorticity formulation. The no-slip solid walls boundary condition is applied by taking advantage of the simple implementation of natural boundary conditions in the FEM, eliminating the need for an iterative evaluation of wall vorticity formulae. In addition, with the proper choice of elements, a stable scheme is constructed allowing convergence to be achieved for all Reynolds numbers, from creeping to inviscid flow, without the traditional need for upwinding and its associated false diffusion. Solutions are presented for a variety of geometries.  相似文献   

    19.
    We describe some experiences using interative solution methods of GMRES type to solve the discretized Navier-Stokes equations. The discretization combined with a pressure correction scheme leads to two different systems of equations: the momentum equations and the pressure equation. It appears that a fast solution method for the pressure equation is obtained by applying the recently proposed GMRESR method, or GMRES combined with a MILU preconditioner. The diagonally scaled momentum equations are solved by GMRES(m), a restarted version of GMRES.  相似文献   

    20.
    Benchmark problems are solved with the steady incompressible Navier–Stokes equations discretized with a finite volume method in general curvilinear co-ordinates on a staggered grid. The problems solved are skewed driven cavity problems, recently proposed as non-orthogonal grid benchmark problems. The system of discretized equations is solved efficiently with a non-linear multigrid algorithm, in which a robust line smoother is implemented. Furthermore, another benchmark problem is introduced and solved in which a 90° change in grid line direction occurs.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号