首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functionalization reaction of poly(styryl)lithiums (Mn = 1.3–9.9 × 103) with ethylene oxide in benzene proceeds quantitatively ( > 99%) to produce the corresponding hydroxyethylated polymer as determined by vapor phase osmometry, size exclusion chromatography, end-group titration, thin layer chromatography, and 1H- and 13C-NMR spectroscopy. 13C-NMR spectral analysis of the functionalized polystyrene with Mn = 1.3 × 103 was consistent with addition of only one ethylene oxide unit to poly(styryl)lithium, i.e., no evidence for ethylene oxide oligomerization was observed.  相似文献   

2.
Anionic living polymerization methods, using organometallic initiators such as butyllithium reagents, have proven useful for, inter alia, styrene polymerization and are amenable to subsequent functionalization of poly(styryl)lithium in the termination step. In this study, general methods for the selective preparation of small styrene oligomers and termination of the intermediate oligo(styryl)lithium anions were investigated. The crude reaction mixtures were analyzed directly by tandem gas chromatography/mass spectrometry (GC/MS). Of the carbon- and silicon-based electrophiles tested, chloro(chloroalkyl)silanes, Cl-SiR2(CH2)nCl in particular, were shown by GC/MS to be regioselective end-capping reagents, thus allowing subsequent transformation to the primary amine. The combined GC/MS data allow not only an estimate of the degree of functionalization, but also the identification of by-products, thus providing insight into the end-capping process that otherwise might be difficult to access. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The oxidation of poly(styryl)lithium with molecular oxygen was investigated in the solid state (with and without N,N,N′, N′-tetramethylethylenediamine) in benzene (with and without N,N,N′, N′-tetramethylethylenediamine) and in benzene/tetrahydrofuran (THF) solutions. The oxidation products included the corresponding polystyrene dimer [(PS)2], the dimeric poly(styrene) peroxide (PSO2PS), poly(styrene) hydroperoxide (PSO2H), and the hydroxyl-terminated polymer (PSOH). The hithertofore unreported macroperoxide (PSO2PS) accounts for approximately 50% of the dimeric product obtained from poly(styryl)lithium oxidations in the presence of Lewis bases. The total amount of peroxide products was determined by iodometric titration in the presence of a phase-transfer catalyst, dicyclohexyl-18-crown-6. On the basis of the effect of polar additives on the amount of dimeric products, it is concluded that dimer formation in the air termination of polymeric organolithium compounds results from oxidation and not carbonation reactions.  相似文献   

4.
Living anionic polymerization has been utilized to synthesize hydroxy end-functionalized PMMA macromonomers with styryl or allyl functionalities as the polymerizable end-groups. Protected hydroxy-functionalized alkyl lithium initiators have been used to initiate anionic polymerization of MMA. Subsequently the living chains with protected hydroxyl function have been terminated using 4-vinylbenzyl chloride (4-VBC) or allyl methacrylate (ALMA) to form α-hydroxy-ω-styryl and α-hydroxy-ω-allyl PMMA, respectively. These protected hydroxy-functionalized PMMA macromonomers have been characterized by GPC and 1H-NMR. Termination using 4-VBC led to 50% functionalization, whereas that using allyl methacrylate led to 100% functionalization of the hydroxy-PMMA.  相似文献   

5.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

6.
The reactivity of copolymer silane composed of maleic anhydride in the modification of fine colloidal silica was studied. The reaction of colloidal silica of 10 and 45-nm diameter with trimethoxysilyl-terminated poly(maleic anhydride-co-styrene) [P(MA-ST)] and poly(MA-co-methyl methacrylate) in tetrahydrofuran resulted in effective surface modification without particle aggregation. From the results that the reaction using the polystyrene silane of low molecular weight led to partial aggregation, it was suggested that the steric interaction between relatively rigid copolymer chains having a maleic anhydride moiety adsorbed on the silica prevented the aggregation in the reaction. The 29Si cross-polarization magic-angle-spinning NMR spectra of P(MA-ST)-modified silica showed that the polymer silane was bound to the silica surface by the direct reaction with silica hydroxyl groups and via the polymerization. Received: 27 June 2001 Accepted: 6 September 2001  相似文献   

7.
The surface grafting onto inorganic ultrafine particles, such as silica, titanium oxide, and ferrite, by the reaction of acid anhydride groups on the surfaces with functional polymers having hydroxyl and amino groups was examined. The introduction of acid anhydride groups onto inorganic ultrafine particle was achieved by the reaction of hydroxyl groups on these surfaces with 4-trimethoxysilyltetrahydrophthalic anhydride in toluene. The amount of acid anhydride groups introduced onto the surface of ultrafine silica, titanium oxide, and ferrite was determined to be 0.96, 0.47, and 0.31 mmol/g, respectively, by elemental analysis. Functional polymers having terminal hydroxyl or amino groups, such as diol-type poly(propylene glycol) (PPG), and diamine-type polydimethylsiloxane (SDA), reacted with acid anhydride groups on these ultrafine particles to give polymer-grafted ultrafine particles: PPG and SDA were considered to be grafted onto these surfaces with ester and amide bond, respectively. The percentage of grafting increased with increasing acid anhydride group content of the surface: the percentage of grafting of SDA (Mn = 3.9 × 103) onto silica, titanium oxide, and ferrite reaching 64.7, 33.7, and 24.1%, respectively. These polymer-grafted ultrafine particles gave a stable colloidal dispersion in organic solvents.  相似文献   

8.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

9.
"Click chemistry" is, by definition, a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis. This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3 ) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS). The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide. Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography. The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy. The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS). The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls, resulting in an amphiphilic shape amphiphile, mPS-DPOSS. This synthetic approach is highly efficient and modular. It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.  相似文献   

10.
A new and very efficient route for the synthesis of aliphatic primary amine terminated polystyrene (PS) is reported. In contrast to most known methods, only traditional commercially available reagents are used. PS is synthesized by anionic polymerization with a lithium counter ion and the living chains are end‐capped by a hydroxyl group upon addition of ethylene oxide followed by protonation. The ω‐hydroxyl end group is tosylated and the tosylate is then reacted with sodium azide. The azide terminal group is finally reduced into primary amine. The different steps of functionalization have been fully characterized by SEC, ToF‐SIMS, FTIR, and 1H NMR. The amine content (= 98%) has been determined by acid‐base titration with perchloric acid. It clearly shows the efficiency of the synthetic method reported in this article although it is a multistep method. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1618–1629, 2000  相似文献   

11.
The novel syntheses of N,N-diisopropyl-4-benzoylbenzamide, N,N-diisopropyl-4-(1-hydroxy-1-phenylethyl)benzamide, and N,N-diisopropyl-4-(1-phenylethenyl)benzamide ( 1 ) are described. ω-Amidopolystyrene ( 2 ) was synthesized in quantitative yields by the reaction of poly(styryl)lithium with stoichiometric amounts of N,N-diisopropyl-4-(1-phenylethenyl)benzamide ( 1 ) in toluene/tetrahydrofuran (4 : 1 v/v) at −78°C. Deblocking of the amide protecting group by acid hydrolysis quantitatively provides the corresponding aromatic carboxyl chain-end functionalized polystyrene ( 3 ). The functionalization agent and functionalized polymers were characterized by HPLC, thin-layer chromatography, size exclusion chromatography, vapor phase osmometry, spectroscopy (1H-NMR, 13C-NMR, and FTIR), potentiometry, and elemental analysis. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1233–1241, 1998  相似文献   

12.
The twin‐tail tadpole‐shaped (cyclic polystyrene)‐block‐[linear poly (tert‐butyl acrylate)]2 [(c‐PS)‐b‐(l‐PtBA)2] was synthesized by combination of Glaser coupling reaction with atom transfer radical polymerization (ATRP) and living anionic polymerization (LAP). First, the telechelic PS with an active and an ethoxyethyl‐protected hydroxyl groups at both ends was prepared by LAP of St monomers using lithium naphthalenide as initiator and terminated by 1‐ethoxyethyl glycidyl ether. And the alkyne groups were introduced onto each PS end by selectively reaction of active hydroxy group with propargyl bromide in NaH/tetrahydrofuran (THF) system. Then, the intramolecular cyclization was carried out by Glaser coupling reaction in pyridine/Cu(I)Br system in air atmosphere. Finally, the macroinitiator of c‐PS with two bromine groups at the junction point was synthesized via the cleavage of ethoxyethyl group and the subsequent esterification of the deprotected hydroxyl groups with 2‐bromoisobutyryl bromide. The copolymer of (c‐PS)‐b‐(l‐PtBA)2 was obtained by ATRP of tBA monomers, and the PtBA segment was also hydrolyzed for (cyclic polystyrene)‐block‐(linear polyacrylic acid)2 [(c‐PS)‐b‐(l‐PAA)2]. The target copolymers and all intermediates were well characterized by GPC, MALDI‐TOF MS, and 1H NMR in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Grignard Metathesis polymerization (GRIM) for the synthesis of regioregular poly(3‐alkylthiophenes) proceeds via a “living” chain growth mechanism. Due to the “living” nature of this polymerization regioregular poly(3‐alkylthiophenes) with predetermined molecular weight, narrow molecular weight distributions and desired chain end functionality are now readily available. Allyl terminated poly(3‐hexylthiophene) was successfully used as a precursor for the synthesis of di‐block copolymers containing polystyrene. The addition of “living” poly(styryl)lithium to the allyl terminated regioregular poly(3‐hexylthiophene) generated the di‐block copolymer. Poly(3‐hexylthiophene)‐b‐polystyrene was also synthesized by atom transfer radical polymerization. Integration of poly(3‐hexylthiophene) in di‐block copolymers with polystyrene leads to the formation of nanowire morphology and self‐ordered conducting nanostructured materials.  相似文献   

14.
Well‐defined ABCD 4‐Miktoarm star‐shaped quarterpolymers of [poly(styrene)‐poly(tert‐butyl acrylate)‐poly(ethylene oxide)‐poly(isoprene)] [star(PS‐PtBA‐PEO‐PI)] were successfully synthesized by the combination of the “click” chemistry and multiple polymerization mechanism. First, the poly(styryl)lithium (PS?Li+) and the poly(isoprene)lithium (PI?Li+) were capped by ethoxyethyl glycidyl ether (EEGE) to form the PS and PI with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, respectively. After these two hydroxyl groups were selectively modified to propargyl and 2‐bromoisobutyryl group for PS, the resulted PS was used as macroinitiator for ATRP of tBA monomer and the diblock copolymer PS‐b‐PtBA with a propargyl group at the junction point was achieved. Then, using the functionalized PI as macroinitiator for ROP of EO monomer and bromoethane as blocking agent, the diblock copolymer PI‐b‐PEO with a protected hydroxyl group at the conjunction point was synthesized. After the hydrolysis, the recovered hydroxyl group of PI‐b‐PEO was modified to bromoacetyl and then azide group successively. Finally, the “click” chemistry between them was proceeded smoothly. The obtained star‐shaped quarterpolymers and intermediates were characterized by 1H NMR, FT‐IR, and SEC in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154–2166, 2008  相似文献   

15.
The first step in the transformation of poly(butadienyl)lithium into a macromolecular atom transfer radical polymerization initiator or reversible addition–fragmentation chain transfer agent is the modification of the anionic chain end into a suitable leaving/reinitiating group. We have investigated three different modification reactions to obtain a styrenic end group at the chain end of poly(butadienyl)lithium. In all cases, we have looked at the influence of a Lewis base on the progress of the reaction. The first modification reaction with α‐methylstyrene leads to partial functionalization and oligomerization. The second reaction with 1,2‐diphenylethylenes, particularly trans‐stilbene, results in monoaddition to the poly(butadienyl)lithium chain ends. Quantitative functionalization is not obtained, possibly because of a hydrogen abstraction reaction, which causes termination. In the third modification reaction, a small polystyrene block is successfully added to the chain ends, as shown by a detailed matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the block copolymers. Nearly quantitative block copolymer formation is achieved, with an average styrene block size of four monomer units and a polydispersity index of 1.19 for the polystyrene block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2536–2545, 2005  相似文献   

16.
Hydroxyl chain‐end functionalizations of polymeric organolithium compounds with oxetane (trimethylene oxide) were studied in benzene at 25 °C. Functionalizations of poly(styryl)lithium and polystyrene‐oligo‐butadienyllithium proceed efficiently to form the corresponding ω‐hydroxypropyl‐functionalized polymers in 98 and 97% isolated yields, respectively. No nonfunctional polymer (≤1–2%) was detected by thin layer chromatography (TLC) analysis for either polymer. All functionalized polymers were characterized by 13C and 1H NMR analyses; no evidence for oxetane oligomerization at the chain end was observed. The MALDI‐TOF mass spectrum of ω‐hydroxypropylpolystyrene was consistent with the expected structure without any detectable oligomerization of oxetane. A small, but detectable series of peaks corresponding to nonfunctional polystyrene was also observed in the MALDI‐TOF mass spectrum. The functionalization of the adduct of 1,1‐diphenylethylene and PSLi produced the corresponding ω‐hydroxypropyl‐functionalized polymer in only 86% isolated yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2684–2693, 2006  相似文献   

17.
This paper presents a new route to the synthesis of UV-curable poly(dimethylsiloxane) dimethacrylate (PDMSDMA). PDMSDMA was essentially prepared by modification of poly(dimethylsiloxane), bis(3-aminopropyl) terminated (PDMS-NH2) with methacrylic anhydride (MAA). The synthesized products were cured under UV in the presence of camphorquinone (CQ) used as a photoinitiator. The chemical structure of PDMSDMA samples was analyzed by FT-IR and 1H-NMR spectroscopy. The 1H-NMR spectrum of PDMSDMA revealed new peaks at 3.20 ppm, corresponding to methylene protons in  CH2 NH , and 5.25 and 5.65 ppm, corresponding to vinylic protons in  NH CO CCH3CH2. The chemical structure of the cured products and the degree of curing were determined by solid state 13C CP/MAS NMR and FT-IR (Micro-ATR) spectroscopy. Various parameters, such as concentration of methacrylic anhydride, amount of camphorquinone, and curing time, were studied.  相似文献   

18.
The enthalpies of interaction of N,N,N′,N′-tetramethylethylenediamine (TMEDA) with poly-(isoprenyl)lithium and poly(styryl)lithium were measured as a function of R ([base]/[Li]) by using high-dilution solution calorimetry at 25°C. Both polymeric organolithiums exhibit initial exothermic enthalpies of interaction with TMEDA (R ? 0.1) of ca. ?13 kcal/mole. The concentration dependencies show a break (decrease) in the plot of ΔH vs. R at ca. R = 0.5 for poly(isoprenyl)lithium and at ca. R = 1.0 for poly(styryl)lithium.  相似文献   

19.
A versatile method was introduced to prepare cyclic polymers from both conjugated and unconjugated vinyl monomers. It was developed on the combination of the RAFT polymerization and the self‐accelerating double strain‐promoted azide‐alkyne click (DSPAAC) reaction. In this approach, a switchable chain transfer agent 1 was designed to have hydroxyl terminals and a functional pyridinyl group. The protonation and deprotonation of pyridinyl group endowed the chain transfer agent 1 with a switchable control capability to RAFT polymerization of both conjugated and unconjugated vinyl monomers. Based on this, RAFT polymerization and the following hydroxyl end group modification were used to prepare various azide‐terminated linear polymers including polystyrene, poly(N‐vinylcarbazole), and polystyrene‐block‐poly(N‐vinylcarbazole). Using sym‐dibenzo‐1,5‐cyclooctadiene‐3,7‐diyne (DBA) as small linkers, the corresponding cyclic polymers were then prepared via the DSPAAC reaction between DBA and azide terminals of the linear precursors. Due to the self‐accelerating property of DSPAAC reaction, this bimolecular ring‐closing reaction could efficiently produce the pure cyclic polymers using excess molar amounts of DBA to linear polymer precursors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1811–1820  相似文献   

20.
以含羧基侧基的聚芳醚酮酮醚酮酮(PEKKEKK-A)树脂为原料,二氯亚砜(SOCl2)、二氯乙烷(DCE)、吡啶为催化溶剂体系,合成带甲酰氯侧基的聚芳醚酮酮醚酮酮(PEKKEKK-C)树脂.PEKKEKK-C与甲醇、乙醇、丁醇、辛醇、苯酚等发生酯化反应,得到5种含羧酸酯侧基的聚芳醚酮酮醚酮酮(PEKKEKK-E)s.用红外光谱(FTIR)、氢核磁谱(1H-NMR)、广角X射线衍射(WAXD)、热失重(TGA)、示差扫描量热(DSC)等技术对其结构与性能进行了分析表征.结果表明,聚合物为非晶聚集态;玻璃化转变温度(Tg)在175.7~236.8℃之间,较PEKK有较大幅度提高;出现两次热失重平台,分别在335~365℃,460~505℃之间,第一次失重可能由于酯分解所致,第二次失重可能是分子主链开始分解;树脂能溶解于DMAc、NMP、二氯甲烷等普通有机溶剂中,溶剂挥发后成膜性良好,可制成透明薄膜;断裂伸长率在6.34%~15.43%之间,拉伸强度在74.68~85.35MPa之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号