首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mono, di- and trihaloresorcinols substituted by a halogen atom at position 2 exhibit a highly specific elimination of H2O on electron impact ionization and under conditions of collisionally induced dissociation (CID). The high isomer specificity suggests the intermediacy of a hydrogen transfer from one of the hydroxy groups to the adjacent halogen atom. A subsequent hydrogen migration to the other hydroxy group readily explains the facile elimination of H2O from the M ions of these particular isomers. An analogous three-step hydrogen transfer has not been observed in 2,3-dihalo-l,4-hydroquinones. 4-Bromo- and 4-icdoresorcinol undergo elimination of the halogen atom followed by a very fast loss of CO under CID conditions, affording [M ? Hal]+ ions of low abundance and highly abundant[M ? Hal ? CO]+ ions. The elimination of CO is suppressed in the isomeric 5-haloresorcinols, resulting in very highly abundant [M ? Hal]+ ions. This behavior suggests that a ‘hidden hydrogen transfer’ accompanies the elimination of the halogen atom from the molecular ions of 4-haloresorcinols.  相似文献   

2.
Diesters of cyclohexane trans-1,3-dicarboxylic acid give rise to major [M ? ROH]+·. ions under electron impact ionization. A mass spectral study of the isomeric mixed methyl ethyl esters of the diacid, substituted by a methyl group at position 1 and deuterium labelled at position 3, indicates a stepwise mechanism for this alcohol elimination; the 3-hydrogen (or deuterium) is transferred to the carbonyl of the 1-ester group in the initial step. Subsequent migration of that hydrogen (or deuterium) to the alkoxyl of position 3 results in the highly site- and stereospecific alcohol elimination. CID spectra of the [M ? ROH]+. ions obtained from the stereoisomeric diesters clearly show that they have different structures (or are different mixtures of structures).  相似文献   

3.
The mass spectra of 4-methyl-7-coumarinyl and 7-coumarinyl diestes ROOC(CH2)nCOOR (n = 2-12) have ben studied by appearance potential measurements, deuterium labelling and by comparison with suitable reference compounds such as the mised diestes ROOC(CH2)nCOOR′ (R=4-methyl-7-coumarinyl and R′ = methyl and phenyl) and 3.4-dihydro-4-methyl-coumarinyl diestes. Observations on the fragment ions of m/e 324, produced from the 7-coumrinyl diestes and their photocyclomers, by elimination of the central bridge as O?C?CH? (CH2)n–2? CH?C?O, demonstrate the existence and reversible formation of cyclomeric molecular ions. A stable bound system between the coumrin end groups is formed only at high internal energies by expulsion of a hydrogen atom, followed by elimination of the central bridge from the [M? H]+ ion. It is also shown that the lifetime of the open form molecular ions decreases remarkably for chain lengths with n larger than 6.  相似文献   

4.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

5.
The main fragmentation sequences of glycollide and its homologues are initiated by fission of a CO? O bond, leading to the formation of fragment ions of low, m/e, such as [R1CO]+ and [CR1R2CCO]+. When a hydrogen atom is present on a ring carbon atom, 1,3 hydrogen migration occurs to produce [CHR2OH]+. In case where a ring carbon atom carries an alkylchain ? C2H5, a McLafferty rearrangement occurs with the adjacent carbonyl group. When both ring carbon atoms are dimethyl substituted, a 1,4 hydrogen migration must be invoked to account for the observed fragmentation sequence.  相似文献   

6.
The mechanism of the formation of [C7H8]+ ions by hydrogen rearrangement in the molecular ions of 1-phenylpropane and 1,3-diphenylpropane has been investigated by looking at the effects of CH3O and CF3 substituents in the meta and para positions on the relative abundances of the corresponding ions and on the appearance energies. The formation of [C7H8]+ ions from 1,3-diphenylpropane is much enhanced at the expense of the formation of [C7H7]+ ions by benzylic cleavage, due to the localized activation of the migrating hydrogen atom by the γ phenyl group. A methoxy substituent in the 1,3-diphenylpropane, exerts a site-specific influence on the hydrogen rearrangement, which is much more distinct than in 1-phenylpropane and related 1-phenylalkanes, the rearrangement reaction being favoured by a meta methoxy group. The mass spectrum of 1-(3-methoxyphenyl)-3-(4-trideuteromethoxyphenyl)-propane shows that this effect is even stronger than the effect of para methoxy groups on the benzylic cleavage. From measurements of appearance potentials it is concluded that the substituent effect is not due to a stabilization of the [C7H7X]+ product ions. Whereas the [C7H7]+ ions are formed directly from molecular ions of 1-phenylpropane and 1,3-diphenylpropane, the [C7H8]+ ions arise by a two-step mechanism in which the s? complex type ion intermediate can either return to the molecular ion or fragment to [C7H8]+ by allylic bond cleavage. Obviously the formation of this s? complex type ion, is influenced by electron donating substituents in specific positions at the phenyl group. This is borne out by a calculation of the ΔHf values of the various species by thermochemical data. Thus, the relative abundances of the fragment ions are determined by an isomerization equilibrium of the molecular ions, preceding the fragmentation reaction.  相似文献   

7.
Protonated aromatic aldehydes and methyl ketones 1a–10a, carrying initially the proton at the carbonyl group, are prepared by electron impact-induced loss of a methyl radical from 1?arylethanols and 2?aryl?2?propanols, respectively. The aryl moiety of the ions corresponds to a benzene group, a naphthalene group, a phenanthrene group, a biphenyl group, and a terphenyl group. respectively, each substituted by a CH3OCH2 side-chain as remote from the acyl substituent as possible. The characteristic reactions of the metastable ions, studied by mass-analyzed ion kinetic energy spectrometry, are the elimination of methanol, the formation of CH3OCH 2 + ions, and the elimination of an ester RCOOCH3 (R = H and CH3) . The mechanisms of these fragmentations were studied by using D-labeled derivatives. Confirming earlier results, it is shown that the ester elimination, at least from the protonated aryl methyl ketones, has to proceed by an intermediate [acyl cation/arylmethyl methyl ether]-complex. The relative abundances of the elimination of methanol and of the ester decrease and increase, respectively, with the size of the aromatic system. Clearly, the fragmentation via intermediate ion-neutral complexes is favored for the larger ions. Furthermore, the acyl cation of these complexes can move unrestricted over quite large molecular distances to react with the remote CH3OCH2-side-chain, contrasting the restricted migration of a proton by 1,2-shifts (“ring walk”) in these systems.  相似文献   

8.
Field ionization kinetic experiments in conjunction with deuterium labelling have been shown that the molecular ions of 3-phenylpropanol with lifetimes as short as 10?11s lose a molecule of water via a specific 1,3 elimination. At times > 10?11s two distinct hydrogen interchange processes in the molecular ions appear to complete with this reaction. One of the intechange processes involves the benzylic and hydroxylic hydrogen atoms and starts to complete with the elimination of water at shorter molecular ion lifetimes than the other interchange process in which the ortho hydrogen atoms also participate. Decomposing [C9H10] ions generated by elimination of water from the molecular ions of 3-phenylpropanol or by direct ionization of various isomeric C9H10 compounds could not be distinguished adequately, illustrating isomerization either to a common ion structure or to a set of ions with rapidly interconverting structures. A consideration of the energetics of the elimination of water from 3-phenylpropanol suggests that at threshold energies 1-phenylpropene or indane type structures can be formed. Arguments for the latter have been obtained from the observation that a labile fluorine atom is present in the [M – H2O] ions generated from 3-pentafluoro-phenylpropanol.  相似文献   

9.
The electron impact mass spectra of isomeric methyl ethyl and ethyl methyl halosuccinates (X = Cl and Br) are surprisingly different. Only the isomers with the ethyl group remote from the halogen give rise to [M - X]+ ions. A low-energy collision-induced dissociation study of deuterium-labelled analogues of the former isomers indicates that the [M - X]+ ions are mixtures of protonated methyl ethyl maleate (major component, > 85%) and fumarate, and the loss of the halogen atom is a multi-step process including at least two specific hydrogen transfers. Migration of a β-hydrogen atom to the carbonyl oxygen within the ethoxycarbouyl group produces a primary radical site in a distonic intermediate which, by subsequent abstraction of a hydrogen atom from C(3), triggers the ejection of X from C(2) with concomitant double bond formation. Whereas in the other isomer an [M - X]+ ion is absent or negligible, a characteristic double loss of C2H4 and CO2 is observed.  相似文献   

10.
The molecular ions of N-trifluoroacetyl α-amino acid trimethylsilyl esters exhibit a characteristic elimination of CO2, in contrast to other amino acid derivatives and apparently caused by migration of the ester trimethylsilyl group to the oxygen atom of the N-trifluoroacetyl function. Fragmentation of the [M – CO2]+˙ ions gives rise to a series of intense peaks, especially for the aliphatic amino acid derivatives. In the case of the isomers leucine and isoleucine, different base peaks are formed for the 20 eV spectra. Amino acids which can easily split off a group in their β-position possibly fragment by synchronous elimination of CO2 and this group. With serine, threonine and cysteine a concurrent ester silyl migration to the oxygen of the β-function is observed, accompanied by the expulsion of CO2.  相似文献   

11.
The formation of an [M + 1]+ ion and the fragmentation of isopropyl o-toluate have been investigated by the deuterium labelling technique and kinetic energy release measurements. The hydrogen atom involved in the [M + 1]+ ion formation does not originate from a specific part of the molecule, but from all parts. A small amount of hydrogen exchange between the secondary carbon atom in the isopropyl group and the carbon atoms in the tolyl group takes place prior to decomposition of the molecular ion into the m/z 136 ion by a McLafferty rearrangement. Either almost complete scrambling of the hydroxyl hydrogen atom and the methyl hydrogen atoms in tolyl group or an almost equilibrated exchange of the hydroxyl hydrogen atom with one of the remaining hydrogen atoms in tolyl group also takes place prior to the elimination of a water molecule from the intermediate m/z 136 ion.  相似文献   

12.
Some diverse compounds possessing a PhC?NO unit cleave the N? O link upon electron impact to give [PhCN]+˙. Different and especially significant modes of N? O scission occur in metastable processes when the oxygen atom of the PhCNO group is exocyclic to a heterocyclic nitrogen atom. Upon electron impact, rupture of the N? O bond in PhCNO-containing molecules generally dominates over 1,3-dipolar cycloreversion, which generates the radical cation of benzonitrile oxide. Stable PhCNO-containing molecules survive competing fragmentations in the ion source to produce [M+H]+ ions of moderate relative intensity. Other ions, which are larger than [M]+ are implicated where M is PhCH?NOR. Several values of m/z for metastable ions are common to compounds which have a PhCNO moiety. These m/z values generally derive both from a parent ion with m/z?105 and from a PhC?NO moiety.  相似文献   

13.
The structure and formation of [C8H8O]+. ions generated from phenylcyclopropylcarbinol and 1-phenyl-1-hydroxymethylcyclopropane upon electron impact, have been studied using kinetic energy release measurements, by determination of ionization and appearance energies and by collisional activation. It is shown that the non-decomposing [C8H8O] ions have exclusively the structure of the enol ion of phenylacetaldehyde, although it is less stable than the enol ion of acetophenone by about 45 kJ mol?1. This has been interpreted as an indication that the [C8H8O] ions from phenylcyclopropylcarbinol are formed by an attack of either the phenyl ring or the hydroxyl group upon the C-1? C-2 (or C-1? C-3) bond of the cyclopropane ring under a simultaneous expulsion of ethene and migration of the attacking group to the C-1 position. The [C8H8O] ion from 1-phenyl-1-(hydroxymethyl)cyclopropane is formed by opening of the cyclopropane ring via a benzylic cleavage. A kinetically controlled hydrogen shift in the resulting ring opened ion prior to or during ethene loss then leads to the formation of [C8H8O] ions which have the structure of the enol ion of phenylacetaldehyde.  相似文献   

14.
Electron impact mass spectra of 2-diphenylmethyl-3-aryl-4(3H)-quinazolinones display ions arising from migrations of different aryl groups in the molecular and [M? H]+ ions. The most abundant ion due to rearrangement, [C13H9NO], is formed by migration of a phenyl from the benzhydryl group onto N-1 and subsequent cleavage of the heterocyclic ring. Other rearrangements involve initial migration of the N-3 aryl group to the benzylic carbon. The mechanisms of migrations were elucidated by means of deuterium and 15N labelling and are supported by metastable spectra.  相似文献   

15.
It has been noticed that the major part of the loss of ?H from the molecular ion of most of the o-methoxythioamides results from an ortho effect of the methoxy group. Comparison of the MIKE spectra of the [M? SH]+ of 1-(2-methoxyphenylthioxomethyl)piperidine and 1-(2-methoxyphenylthioxomethyl)pyrrolidine with the MIKE spectra of [M? SH]+ of the corresponding unsubstituted compounds, reported earlier, indicated two parallel pathways for the formation of [M? SH]+ in the o-methoxy compounds. In the first pathway, as has been noticed in thioamides in general, the loss of ?H involves the migration of either the α-hydrogen in the amine moiety or the hydrogen attached to nitrogen. In the second pathway, the migration of a hydrogen from the o-methoxy group to the sulphur atom followed by ejection of SH from the molecular ion leads to a stable cyclized ion. Interesting secondary fragmentations as a consequence of this ortho effect have also been noticed.  相似文献   

16.
Electron impact mass spectra were measured for five isomers of pyridinobenzanthrones and three isomers of benzobenzanthrones. The fragmentation pattern and intensity of M2+, [M – H]+, [M – CO]i+, [M – CO – H(or 2H)]i+ and [M – CO – HCN]i+ (i = 1, 2) ions indicated remarkable differences and very interesting features according to the isomers with or without nitrogen and condensation positions of a pyridino or benzo ring to the benzanthrone skeleton. Further, the competition of decompositions through [M – H]+, [M – CO] or [M – HCN] ions was confirmed by the observation of metastable ions and the appearance energies of fragment ions. Interesting observations from these results were expulsion of an H atom in close proximity to the area around an O?C group, a weak bonding interaction between sp2 C? H and an O?C group, inducing specific hydrogen rearrangement, and characteristic charge localization on heteroatoms.  相似文献   

17.
We report the first positive chemical ionization (PCI) fragmentation mechanisms of phthalates using triple‐quadrupole mass spectrometry and ab initio computational studies using density functional theories (DFT). Methane PCI spectra showed abundant [M + H]+, together with [M + C2H5]+ and [M + C3H5]+. Fragmentation of [M + H]+, [M + C2H5]+ and [M + C3H5]+ involved characteristic ions at m/z 149, 177 and 189, assigned as protonated phthalic anhydride and an adduct of phthalic anhydride with C2H5+ and C3H5+, respectively. Fragmentation of these ions provided more structural information from the PCI spectra. A multi‐pathway fragmentation was proposed for these ions leading to the protonated phthalic anhydride. DFT methods were used to calculate relative free energies and to determine structures of intermediate ions for these pathways. The first step of the fragmentation of [M + C2H5]+ and [M + C3H5]+ is the elimination of [R? H] from an ester group. The second ester group undergoes either a McLafferty rearrangement route or a neutral loss elimination of ROH. DFT calculations (B3LYP, B3PW91 and BPW91) using 6‐311G(d,p) basis sets showed that McLafferty rearrangement of dibutyl, di(‐n‐octyl) and di(2‐ethyl‐n‐hexyl) phthalates is an energetically more favorable pathway than loss of an alcohol moiety. Prominent ions in these pathways were confirmed with deuterium labeled phthalates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The correlations between electron impact induced formation of fragment [M ? C6H6]+˙ from alkyl-substituted 2,2-diphenyl-1,3-dioxa-2-germacyclohexane (1) and the peculiarities of the molecular structures were found. Benzene elimination is regiospecific and stereoselective, resulting from the abstraction of an axial phenyl group and a hydrogen atom from the C-4 or C-6 position of the ring.  相似文献   

19.
The substituent effect on the single and double hydrogen atom transfer reactions in para-substituted benzoic acid isobutyl esters has been investigated by electron impact mass spectrometry. Electron-donating substituents favour formation of the [M? C4H8]+˙ ion generated by single hydrogen atom transfer reaction (McLafferty rearrangement), whereas electron-withdrawing substituents favour formation of the [M? C4H7]+ ion generated by double hydrogen atom transfer reaction. In the case of the latter compounds, the m/z56 ([C4H8]+˙) ion, which is generated by single hydrogen atom transfer reaction with charge migration, is very intense, while in the former compounds, the m/z56 ion is very weak. These observations can be reasonably explained on thermochemical grounds based on the sum of the standard heats of formation of the fragments.  相似文献   

20.
The elimination of small neutral fragments from acetyl-, formyl- and ethoxycarbonyl- phenylhydrazines with formation of [C6H8N2]+? ions has been studied. Evidence is obtained from deuterium labelling and from metastable peak intensity ratios, to show that ketene loss from both acetylphenylhydrazines is accompanied (or preceded) by hydrogen transfer to the acylated nitrogen atom to give ions structurally analogous to the phenylhydrazine molecular ion. The decomposing [C6H8N2]+? ions formed from formyl- and ethoxycarbonylphenylhydrazines are also suggested to have a phenylhydrazine-like structure. In the molecular ion of phenylhydrazine interchange occurs between the two ortho hydrogen atoms and two of the three hydrazine hydrogens prior to decomposition; labelling data suggest that the N-1 hydrogen does not participate in the interchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号