首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

2.
Reactions that proceed within mixed ethylene–methanol cluster ions were studied using an electron impact time-of-flight mass spectrometer. The ion abundance ratio, [(C2H4)n(CH3OH)mH+]/[(C2H4)n(CH3OH)m+], shows a propensity to increase as the ethylene/methanol mixing ratio increases, indicating that the proton is preferentially bound to a methanol molecule in the heterocluster ions. The results from isotope-labelling experiments indicate that the effective formation of a protonated heterocluster is responsible for ethylene molecules in the clusters. The observed (C2H4)n(CH3OH)m+ and (C2H4)n(CH3OH)m–1CH3O+ ions are interpreted as a consequence of the ion–neutral complex and intracluster ion–molecule reaction, respectively. Experimental evidence for the stable configurations of heterocluster species is found from the distinct abundance distributions of these ions and also from the observation of fragment peaks in the mass spectra. Investigations on the relative cluster ion distribution under various conditions suggest that (C2H4)n(CH3OH)mH+ ions with n + m ≤ 3 have particularly stable structures. The result is understood on the basis of ion–molecule condensation reactions, leading to the formation of fragment ions, $ {\rm CH}_2=\!=\mathop {\rm O}\limits^ + {\rm CH}_3 $ and (CH3OH)H3O+, and the effective stabilization by a polar molecule. The reaction energies of proposed mechanisms are presented for (C2H4)n(CH3OH)mH+(n + m ≤ 3) using semi-empirical molecular orbital calculations.  相似文献   

3.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

4.
Positive and negative cluster ions in methanol have been examined using a direct fast atom bombardment (FAB) probe technique. Positive ion (CH3OH)IIH + clusters with n = 1-28 have been observed and their clusters are the dominant ions in the low-mass region. Cluster-ion reaction products (CH3OH)II(H2O)H+ and (CH3OH)II(CH3OCH3)H+ are observed for a wide range of n and the abundances of these ions decrease with increasing n. The negative ion (CH3OH)II(CH3O)? clusters are also readily observed with n = 0-24 and these form the most-abundant negative ion series at low n. The (CH3OH)II(CH2O)?, (CH3OH)II(HIIO)(CH2O)? and (CH3OH)II(H2OXCH3O)? cluster ions are formed and the abundances of these ions approach those of the (CH3OH)II(CH3O)? ion series at high n. Cluster-ion structures and energetics have been examined using semi-empirical molecular orbital methods.  相似文献   

5.
In contrast to an earlier report,1 the collisonally induced dissociation of protonated 2-propanol and t-butyl alcohol yields spectra that are indistinguishable from those of the corresponding [C3H7/H2O]+ and [C4H9/H2O]+ ions generated by the (formal) gas phase addition reactions in a high pressure ion source of [s-C3H7]+ and [t-C4H9]+ ions with the n-donor H2O. Similarly, [s-C3H7/CH3OH]+ ions generated by both gas phase protonation of n- and s-propyl methyl ethers and addition reactions of [C3H7]+ to CH3OH display mode-of-generation-independent collisionally induced dissociation characteristics. However, analysis of the unimolecular dissociation (loss of propene) of the [C3H7/CH3OH]+ system, including a number of its deuterium, 13C- and 18O-labelled isotopomers, supports the idea that prior to unimolecular dissociation, covalently bound [C3H7- O(H)CH3]+ ions intercovert with hydrogen-bridged adduct ions, analogous to the behaviour of the distonic ethene-, propene- and ketene-H2O radical cations.  相似文献   

6.
The mechanism of the formation of [C7H8]+ ions by hydrogen rearrangement in the molecular ions of 1-phenylpropane and 1,3-diphenylpropane has been investigated by looking at the effects of CH3O and CF3 substituents in the meta and para positions on the relative abundances of the corresponding ions and on the appearance energies. The formation of [C7H8]+ ions from 1,3-diphenylpropane is much enhanced at the expense of the formation of [C7H7]+ ions by benzylic cleavage, due to the localized activation of the migrating hydrogen atom by the γ phenyl group. A methoxy substituent in the 1,3-diphenylpropane, exerts a site-specific influence on the hydrogen rearrangement, which is much more distinct than in 1-phenylpropane and related 1-phenylalkanes, the rearrangement reaction being favoured by a meta methoxy group. The mass spectrum of 1-(3-methoxyphenyl)-3-(4-trideuteromethoxyphenyl)-propane shows that this effect is even stronger than the effect of para methoxy groups on the benzylic cleavage. From measurements of appearance potentials it is concluded that the substituent effect is not due to a stabilization of the [C7H7X]+ product ions. Whereas the [C7H7]+ ions are formed directly from molecular ions of 1-phenylpropane and 1,3-diphenylpropane, the [C7H8]+ ions arise by a two-step mechanism in which the s? complex type ion intermediate can either return to the molecular ion or fragment to [C7H8]+ by allylic bond cleavage. Obviously the formation of this s? complex type ion, is influenced by electron donating substituents in specific positions at the phenyl group. This is borne out by a calculation of the ΔHf values of the various species by thermochemical data. Thus, the relative abundances of the fragment ions are determined by an isomerization equilibrium of the molecular ions, preceding the fragmentation reaction.  相似文献   

7.
The gas phase reactions of metal ions (Al+, Cu+) with amine molecules [CH3NH2=MA, (CH3)2NH=DMA] were investigated using a laser ablation‐molecular beam method. The directly associated product complex ions,Al+‐MA and Al+‐DMA, and the dehydrogenation product ions, Cu+(CH2NH) and Cu+(C2H5N), as well as hydrated ion Cu+(NC2H5·H2O), have been obtained and recorded from the reactions of the metal ions and organic amine molecules, and density functional theory (B3LYP) calculations have been performed to reveal the optimized geometry, energetics, and reaction mechanism of the title reactions with basis set 6‐311+G(d,p) adopted.  相似文献   

8.
A series of novel cationic gemini surfactants, p-[C n H2n+1N+(CH3)2CH2CH(OH)CH2O]2C6H4·2Cl? [A(n = 12), B(n = 14) and C(n = 16)], containing a spacer group with two flexible and hydrophilic groups (2-hydroxy-1,3-propylene) on both sides of a rigid and hydrophobic group (1,4-dioxyphenylene) has been synthesized by the reaction of hydroquinone diglycidyl ether with N,N-dimethylalkylamine and N,N-dimethylalkylamine hydrochloride. Their surface-active properties have been investigated by surface tension measurement. The critical micelle concentration (cmc) values of the synthesized cationic gemini surfactants are one order of magnitude lower than those of their corresponding monomeric surfactants (C n H2n + 1N+(CH3)3·Cl?). Both the cmc and surface tension at the cmc (γcmc) of A are lower than those of p-[C12H25N+(CH3)2CH2]2C6H4·2Cl? (D). The novel cationic gemini surfactants A and B also show good foaming properties.  相似文献   

9.
The title compound, [Cu3(C3H5O2)6(C6H7NO)4]n, is composed of polymeric chains formed by alternating centrosymmetric Cu2(μ‐CH3CH2CO2)4 and Cu(C3H5O2)2(C6H7NO)2 units. These elemental units are linked by two bridging 3‐pyridylmethanol (3PM) ligands. The Cu2(μ‐CH3CH2CO2)4 group presents a centrosymmetric tetra­bridged structure with four synsyn bridging propionate ligands to which two 3PM mol­ecules are bonded (through N), occupying the apical positions of each square‐pyramidal polyhedron around the CuII ions. The remaining mononuclear group is centred around a third CuII ion, which lies on a symmetry centre and is bound to two monodentate propionate groups (through O), two monodentate 3PM mol­ecules (through N) and two bridging 3PM mol­ecules (through O), thus completing a square‐bipyramidal CuO2N2O2 coordination.  相似文献   

10.
The neutral counterparts of the C2H7O+ isomers CH3O+ (H)CH3, CH3CH2OH2+ and $ {\rm C}_2 \,{\rm H}_4 \,\, \cdot \cdot \cdot \mathop {\rm H}\limits^ + \, \cdot \cdot \cdot {\rm OH}_2 $ were studied by neutralization-reionization mass spectrometry. Protonated dimethyl ether and its —O(D)+ analogue were produced by protonation (deuteration) of dimethyl ether and also generated as a fragment ion from (labeled) ionized CH3OCH2CH(OH)CH3 by loss of CH3CO?. It was observed that the dissociation characteristics of the ions and the stability of their neutral counterpart depended on the internal energy of the protonated ether ions. Stable neutral CH3?(H)CH3 was only produced from energy-rich ions. The classical protonated ethanol ion CH3CH2OH2+ (a) was produced at threshold by the loss of CH3CO?. from ionized butane-2,3-diol. Mixtures of a with the non-classical ion $ {\rm C}_2 \,{\rm H}_4 \,\, \cdot \cdot \cdot \mathop {\rm H}\limits^ + \, \cdot \cdot \cdot {\rm OH}_2 $ (b) were produced by reaction of C2H5+ ions with H2O. As for the protonated ether, only high-energy a and/or b ions yielded stable hypervalent radicals. It is suggested that the stable C2H7?O radicals are Rydberg states.  相似文献   

11.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The unimolecular dissociation reactions for [C7H7O]+ ions generated by fragmentation of a series of precursor molecules have been investigated. The metastable kinetic energy values and branching ratios associated with decarbonylation and expulsion of a molecule of formaldehyde (CH2O) from the [C7H7O]+ ions are interpreted as the hydroxybenzyl and hydroxytropylium [C7H7O]+ not interconverting to a common structure on the microsecond time-scale. In addition, similar measurements on protonated benzaldehyde, methylaryloxy and phenyl methylene ether [C7H7O]+ ions are interpreted as the dominant fraction of these decomposing ions having unique structures on the microsecond time-scale. These results are supported by experimental heats of formation calculated from ionization/appearance energy measurements. The experimental heats of formation are determined as: hydroxybenzyl ions, 735 kJ mol?1; hydroxytropylium ions, 656 kJ mol?1; phenyl methylene ether ions, 640 kJ mol?1; methylaryloxy ions 803 kJ mol?1. The combination of the results reported in this paper with previously reported experimental data for stable [C7H7O]+ ions (see Ref. 1, C. J. Cassady, B. S. Freiser and D. H. Russell, Org. Mass Spectrom.) is interpreted as evidence that the relative population of benzyl versus tropylium [C7H7O]+ ion structures from a given precursor molecule is determined by isomerization of the parent ion and not by structural equilibration of the [C7H7O]+ ion.  相似文献   

13.
The fragmentation of 2,7-octanedione, induced by chemical ionization with methane as a reagent gas (CI (CH4)), is shown to be extensively governed by the interaction of the two carbonyl groups. Tandem mass spectrometry reveals that a sequential loss of H2O and C2H4O from the [M + H]+ ion competes with sequential loss of H2O and C6H10, and that both processes occur via the same [MH - H2O]+ intermediate. This intermediate is likely to be formed via intramolecular gas-phase aldol condensation and subsequent dehydration. The resulting C(1) protonated 1-acetyl-2-methylcyclopentene structure readily accounts for the observed further decomposition to CH3C?O+ and 1-methylcyclopentene (C6H10) or, alternatively, to [C6H9]+ (e. g. 1-methylcyclopentenylium) ions and acetaldehyde (C2H4O). Support for this mechanistic rationale is derived from deuterium isotope labelling and low-energy collision-induced dissociation (CID) of the [MH - H2O]+ ion. The common intermediate shows a CID behaviour indistinguishable by these techniques from that of reference ions, which are produced by gas-phase protonation of the authentic cyclic aldol or by gas-phase addition of an acetyl cation to 1-methylcyclopentene in a CI (CH3COOCH3) experiment.  相似文献   

14.
The goals of the present study were (a) to create positively charged organo‐uranyl complexes with general formula [UO2(R)]+ (eg, R═CH3 and CH2CH3) by decarboxylation of [UO2(O2C─R)]+ precursors and (b) to identify the pathways by which the complexes, if formed, dissociate by collisional activation or otherwise react when exposed to gas‐phase H2O. Collision‐induced dissociation (CID) of both [UO2(O2C─CH3)]+ and [UO2(O2C─CH2CH3)]+ causes H+ transfer and elimination of a ketene to leave [UO2(OH)]+. However, CID of the alkoxides [UO2(OCH2CH3)]+ and [UO2(OCH2CH2CH3)]+ produced [UO2(CH3)]+ and [UO2(CH2CH3)]+, respectively. Isolation of [UO2(CH3)]+ and [UO2(CH2CH3)]+ for reaction with H2O caused formation of [UO2(H2O)]+ by elimination of ·CH3 and ·CH2CH3: Hydrolysis was not observed. CID of the acrylate and benzoate versions of the complexes, [UO2(O2C─CH═CH2)]+ and [UO2(O2C─C6H5)]+, caused decarboxylation to leave [UO2(CH═CH2)]+ and [UO2(C6H5)]+, respectively. These organometallic species do react with H2O to produce [UO2(OH)]+, and loss of the respective radicals to leave [UO2(H2O)]+ was not detected. Density functional theory calculations suggest that formation of [UO2(OH)]+, rather than the hydrated UVO2+, cation is energetically favored regardless of the precursor ion. However, for the [UO2(CH3)]+ and [UO2(CH2CH3)]+ precursors, the transition state energy for proton transfer to generate [UO2(OH)]+ and the associated neutral alkanes is higher than the path involving direct elimination of the organic neutral to form [UO2(H2O)]+. The situation is reversed for the [UO2(CH═CH2)]+ and [UO2(C6H5)]+ precursors: The transition state for proton transfer is lower than the energy required for creation of [UO2(H2O)]+ by elimination of CH═CH2 or C6H5 radical.  相似文献   

15.
The loss of methyl from unstable, metastable and collisionally activated [CH2?CH? C(OH)?CH2]+˙ ions (1+˙) was examined by means of deuterium and 13C labelling, appearance energy measurements and product identification. High-energy, short-lived 1+˙ lose methyl groups incorporating the original enolic methene (C(1)) and the hydroxyl hydrogen atom (H(0)). The eliminations of C(1)H(1)H(1)H(4) and C(4)H(4)H(4)H(0) are less frequent in high-energy ions. Metastable 1+˙ eliminate mainly C(1)H(1)H(1)H(4), the elimination being accompanied by incomplete randomization of the five carbon-bound hydrogen atoms. The resulting [C3H3O]+ ions have been identified as the most stable CH2?CH? CO+ species. The appearance energy for the loss of methyl from 1 was measured as AE[C3H3O]+ = 10.47 ± 0.05 eV. The critical energy for 1+˙ → [C3H3O]+ + CH3˙ is assessed as Ec ? 173 kJ mol?1. Reaction mechanisms are proposed and discussed.  相似文献   

16.
Specific ion/molecule reactions are demonstrated that distinguish the structures of the following isomeric organosilylenium ions: Si(CH3) 3 + and SiH(CH3)(C2H5)+; Si(CH3)2(C2H5)+ and SiH(C2H5) 2 + ; and Si(CH3)2(i?C3H7)+, Si(CH3)2(n?C3H7)+, Si(CH3)(C2H5) 2 + , and Si(CH3)3(π?C2H4)+. Both methanol and isotopically labeled ethene yield structure-specific reactions with these ions. Methanol reacts with alkylsilylenium ions by competitive elimination of a corresponding alkane or dehydrogenation and yields a methoxysilylenium ion. Isotopically labeled ethene reacts specifically with alkylsilylenium ions containing a two-carbon or larger alkyl substituent by displacement of the corresponding olefin and yields an ethylsilylenium ion. Methanol reactions were found to be efficient for all systems, whereas isotopically labeled ethene reaction efficiencies were quite variable, with dialkylsilylenium ions reacting rapidly and trialkylsilylenium ions reacting much more slowly. Mechanisms for these reactions and differences in the kinetics are discussed.  相似文献   

17.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

18.
[CnH2n?3]+ and [CnH2n?4]+·(n = 7, 8) ions have been generated in the mass spectrometer from CnH2n?3 Br (n = 7, 8) precursors and from two steroids. The relative abundances of competing ‘metastable transitionss’ indicate (partial) isomerization to a common structure (or mixture of structures) prior to decomposition in most examples of all four types of ions. In contrast, [C8H10O]+· and [C8H12O]+· ions, generated from different sources as molecular ions and by fragmentation of steroids, do not decompose through common-intermediates.  相似文献   

19.
Crystals from commercial samples of sodium cacodylate trihydrate, NaO2As(CH3)2·3H2O, were analyzed by single‐crystal X‐ray diffraction and two phases were identified, viz. penta‐μ‐aqua‐disodium(I) bis(dimethylarsenate), {[Na2(H2O)5](C2H6AsO2)2}n, (I), and di‐μ‐aqua‐bis[triaquasodium(I)] bis(dimethylarsenate), [Na2(H2O)8](C2H6AsO2)2, (II). Both (I) and (II) form layered structures in which hydrated Na+ ions form layers in the ab plane, the cacodylate ions being located in between the layers. In (I), the two non‐equivalent Na+ ions (located at twofold axes) and the three non‐equivalent aqua ligands (one of which also lies on a twofold axis) form infinite polymeric layers, but in (II), layers of discrete centrosymmetric [Na2(H2O)8]2+ ions are present. One of the commercial samples analyzed contained almost exclusively crystals of the tetrahydrate (II), while another sample consisted of a mixture of the two phases.  相似文献   

20.
An account is given of the development of the proposal that ion–neutral complexes are involved in the unimolecular reactions of onium ions (R1R2C?Z+R3; Z = O, S, NR4; R1, R2, R3, R4 = H, CnH2n + 1), with particular emphasis on the informative C4H9O+ oxonium ion system (Z = O; R1, R2 = H; R3 = C3H7). Current ideas on the role of ion-neutral complexes in cation rearrangements, hydrogen transfer processes and more complex isomerizations are illustrated by considering the behaviour of isomeric CH3CH2CH2X+ and (CH3)2CHX+ species [X = CH2O, CH3CHO, H2O, CH3OH, NH3, NH2CH3, NH(CH3)2, CH2?NH, CH2?NCH3, CO, CH3˙, Br˙ and I˙]. Attention is focused on the importance of four energetic factors (the stabilization energy of the ion–neutral complex, the energy released by rearrangement of the cationic component, the enthalpy change for proton transfer between the partners of the ion neutral complex and the ergicity of recombination of the components) which influence the reactivity of the complexes. The nature and extent of the chemistry involving ion-neutral complexes depend on the relative magnitudes of these parameters. Thus, when the magnitude of the stabilization energy exceeds the energy released by cation rearrangement, the ergicity of proton transfer is small, and recombination of the components in a new way is energetically favourable, extensive complex-mediated isomerizations tend to occur. Loss of H2O from metastable CH2?O+C3H7 ions is an example of such a reaction. Conversely, if the stabilization energy is small compared with the magnitude of the energy released by eation rearrangement, the opportunities for complex-mediated processes to become manifest are decreased, especially if proton transfer is endoergic. Thus, CH3CH2CH2CO+ expels CO, with an increased kinetic energy release, after rate-limiting isomerization of CH3CH2CH2+? CO to (CH3)2CH+? CO has taken place. When proton transfer between the components of the complex is strongly exoergic, fragmentation corresponding to single hydrogen transfer occurs readily. The proton-transfer step is often preceded by cation rearrangement for CH3CH2CH2X+ species. In such circumstances, the involvement of ion–neutral complexes can be detected by the observation of unusual site selectivity in the hydrogen-transfer step. Thus, C3H6 loss from CH2?N+(R1)CH2CH2CH3 (R1 = H, CH3, C3H7) immonium ions is found by 2H-labelling experiments to proceed via preferential α-and γ-hydrogen transfer; this finding is explained if the incipient +CH2CH2CH3 ion isomerizes to CH3CH+CH3 prior to proton abstraction. In contrast, the isomeric CH2?N+(R1)CH(CH3)2 species undergo specific β-hydrogen transfer because the developing CH3CH+CH3 cation is stable with respect to rearrangements involving a 1,2-H shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号