首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Alkylacrylic acids (RAA's) bearing n-alkyl groups were found to homopolymerize with slower rates than acrylic and methacrylic acids to number-average molecular, weight (M?n) of 104 or above. When the α-substituent was a branched alkyl group, the polymerization rate and M?n decreased further. Reactivities of RAA's in copolymerization were interpreted by steric and resonance effects of the alkyl group using Hancock's steric substituent constant. Comparison of the reactivities of RAA's with those of methyl α-alkylacrylates revealed that replacement with the smaller carboxyl group facilitates polymerization and copolymerization. Preference of co-syndiotactic propagation in the copolymerization of methacrylic acid with styrene changed to random fashion in the copolymerization of the α-higher alkyl derivatives. After methylation with diazomethane, the homopolymers were shown to be thermally less stable than poly(methyl methacrylate). Tg's of poly(methyl α-ethylacrylate) and poly(methyl α-n-propylacrylate) were 57 and 25°C, respectively.  相似文献   

2.
Ethyl α-hydroxymethylacrylate (EHMA) was polymerized in a 3 mol/L tetrahydrofuran solution at 50°C, using 2–2' azobisisobutyronitrile as initiator. The kinetic behavior indicates a higher polymerization rate for EHMA than for methyl methacrylate (MMA). Copolymerization reaction between MMA and EHMA, under the same experimental conditions, was carried out and values of rMMA = 1.264 and rEHMA = 1.285 were found for the reactivity ratios. The comparison of triad sequences as determined from Bernouillian statistic to those calculated from the experimental spliting of O-methyl and α-methyl 1H-NMR signals of the copolymers confirm the obtained results. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
Abstract

In 1962 Kimura, Takitani, and Imoto [1] found that an aqueous solution of starch could easily polymerize methyl methacrylate (MMA), and about one-half of the polymerized MMA was grafted on to starch. This novel polymerization was called “uncatalyzed polymerization.” Since then, a large number of macromolecules other than starch have been studied, and many of them are effective for initiating the radical polymerization of MMA.  相似文献   

4.
Polymerization and copolymerization of methyl α-(2-carbomethoxyethyl)acrylate (MMEA), which is known as a dimer of methyl acrylate, were studied in relation to steric hindrance-assisted polymerization. The propagating polymer radical from MMEA was detected as a five-line spectrum and quantified by ESR spectroscopy during the bulk polymerization at 40–80°C. The absolute rate constants of propagation and termination (κp and κt) for MMEA at 60°C (κp = 19 L/mol s and κt = 5.1 × 105 L/mol s) were evaluated using the concentration of the propagating radical at the steady state. The balance of the propagation and termination rates allows polymer formation from MMEA. The polymerization rate of MMEA at 60°C was less than that of MMA by a factor of about 4 at a constant monomer concentration. Although no influence of ceiling temperature was observed at a temperature ranging from 40 to 70°C, addition-fragmentation in competition with propagation reduced the molecular weight of the polymer. The content of the unsaturated end group was estimated to be 0.1% at 60°C to the total amount of the monomer units consisting of the main chain. MMEA exhibited reactivities almost similar to those of MMA toward polymer radicals. It is concluded that MMEA is one of the polymerizable acrylates bearing a substituted alkyl group as an α-substituent. Characterization of poly(MMEA) was also carried out. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Three 14C-labeled benzoin methyl ether (α-methoxy-α-phenylacetophenone) derivatives were utilized as photoinitiators in the polymerization of methyl methacrylate (MMA) and methyl acrylate (MA). The results of polymer end-group analysis are in accord with a mechanism of benzoin ether photocleavage into initiator radicals and dispute earlier labeling studies which were interpreted as evidence for copolymerization of excited-state benzoin ethers with reactive monomers. In MMA polymerization, the results indicate a preference for termination by disproportionation (~60%) and provide evidence for primary radical termination at 0.041M photoinitiator (optically dense solutions) in neat MMA. Evidence for chain branching by initiator radical hydrogen abstraction from poly(methyl acrylate) (PMA) is also presented. The benzoyl and α-methoxybenzyl radicals, produced on photolysis of benzoin methyl ether, appear to be equally effective in both initiation and hydrogen-abstraction processes. Quantum yields at 366 and 313 nm indicate the absence of a wavelength effect.  相似文献   

6.
S-Methyl thiomethacrylate (methyl thiolmethacrylate, MTMA) was polymerized with a variety of anionic initiators such as n-BuLi, octylpotassium, PhMgBr, and Et2AlNPh2 in toluene and THF. Stereoregularity of the polymer (PMTMA) was determined from the 1H-NMR spectrum of poly(methyl methacrylate), which had been derived from PMTMA, because the α-methyl resonance in the 1H-NMR spectrum of PMTMA was not satisfactorily solved owing to the overlap of pentad signals. The 13C-NMR spectrum of PMTMA also showed the splitting due to pentad sequences. Stereoregularity of PMTMA was always low compared with that of poly(methyl methacrylate), which was prepared under the same reaction conditions. MTMA was much more reactive than methyl methacrylate and methacrylonitrile in the copolymerization with n-BuLi in toluene and in THF at ?78°C. The lower stereoregulation of the polymerization of MTMA and the higher reactivity of MTMA were mainly ascribed to the higher resonance effect of MTMA.  相似文献   

7.
Butyl vinyl ether (BVE) and methyl methacrylate (MMA) mixtures were polymerized by using free radical initiators in conjunction with a cationic initiator such as diphenyl iodonium salt. Polymerization mechanism involves free radical polymerization of MMA which is switched to cationic polymerization of BVE by addition of growing poly(MMA) radicals to BVE and subsequent oxidation of electron donating polymeric radicals to the corresponding cations by iodonium ions. Two representative bifunctional monomers, ethylene glycol divinyl ether (EGDVE) and ethylene glycol dimethacrylate (EGDMA) were also used together with MMA and BVE, respectively, in photo and thermal crosslinking polymerizations. Vinyl ether and methacrylate type monomers can successfully be copolymerized by this double-mode polymerization under photochemical conditions.  相似文献   

8.
α-Methylvinyl methyl ether, ethyl ether, and isobutyl ether were polymerized under various polymerization conditions and the structure of the polymers was determined by 1H- and 13C-NMR spectroscopy. α-Methyl and β-methylene carbon spectra of poly(α-methylvinyl isobutyl ether) showed splitting and were analyzed by triad and tetrad sequences. β-Methylene carbon spectra of poly(α-methylvinyl ethyl ether) also showed splitting. When Eu(fod)3 was added, α-methyl and methoxy proton spectra in benzene of poly(α-methylvinyl methyl ether) showed splitting assigned to triad tacticities. All the polymers obtained in polar solvents exhibited an increase in syndiotacticity. The polymerization mechanism is discussed.  相似文献   

9.
Hydrogels are materials with the ability to swell in water through the retention of significant fractions of water within their structures. Owing to their relatively high degree of biocompatibility, hydrogels have been utilized in a host of biomedical applications. In an attempt to determine the optimum conditions for hydrogel synthesis by the free-radical polymerization of sorbitan methacrylate (SMA), the hydrogel used in this study was well polymerized under the following conditions: 50% (w/v) SMA as monomer, 1% (w/w) alpha, alpha'-azo-bis(isobutyro-nitrile) as thermal initiator, and 1% (w/w) ethylene glycol dimethacrylate as cross-liking agent. Under these conditions, the moisture content of the polymerized SMA hydrogel was higher than in the other conditions. Moreover, the moisture content of the poly(SMA) hydrogel was also found to be higher than that of the poly(methyl methacrylate [MMA]) hydrogel. When the Fourier transform-infrared spectrum of poly(SMA) hydrogel was compared with that of poly(MMA) hydrogel, we noted a band at 1735-1730/cm, which did not appear in the Fourier transform-infrared spectrum of poly(MMA). The surface of the poly(SMA) hydrogel was visualized through scanning electron microscopy, and was uniform and clear in appearance.  相似文献   

10.
The polymerization of vinyl monomers initiated with the system of polyvinylferrocene (PVFc) and carbon tetrachloride (CCl4) was carried out in dark. Methyl methacrylate (MMA) and acrylonitrile (AN) could be polymerized, while styrene (St) was hardly polymerized under the conditions used. The polymerization proceeded through a free-radical mechanism and was concluded to be initiated by attack of vinyl monomer, having a polarized vinyl group, on the charge-transfer complex of PVFc/CCl4. In the polymerization of MMA, the initiating ability of PVFc was much larger than that of ferrocene (Fc-H) or poly(ferrocenylmethyl methacrylate) (PFMMA) and was comparable to that of polyferrocenylenemethylene (PFM). The overall activation energy was estimated to be 34.2 kJ/mole.  相似文献   

11.
Blends of poly(methyl methacrylate) (PMMA) and poly(acrylonitrile-g-(ethylene-co-propylene-co-diene)-g-styrene) (AES) were prepared by in situ polymerization. AES, a commercial elastomer obtained by radical copolymerization of styrene and acrylonitrile in the presence of ethylene-propylene-diene terpolymer (EPDM), was dissolved in methyl methacrylate and the in situ polymerization was conducted at 60 °C. The blends were characterized by CHN analysis, infrared spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), dynamic mechanical analysis (DMA) and transmission electron microscopy (TEM). These blends are immiscible and present complex phase behavior. Selective extraction of the blends’ components showed that a fraction of the material is crosslinked and grafting reactions on EPDM chains take place during MMA polymerization. Syndiotactic PMMA was obtained in the presence of AES and this syndiotactic-specificity increased with increasing amount of AES. The morphology of polymerized specimens showed irregular domains of elastomeric phase and in some cases inclusions of PMMA could be observed.  相似文献   

12.
Host guest complexes of methyl methacrylate (MMA) and randomly methylated β‐cyclodextrin (m‐β‐CD, 1 a ) were polymerized in aqueous medium using atom‐transfer radical polymerization. Ethyl 2‐bromoisobutyrate (EBIB) was used as an initiator, copper(I) bromide as the catalyst, and bipyridine (bipy) or 4,4′‐di‐(5‐nonyl)‐2,2´‐bipyridine (dNbipy) as ligands. The unthreading of m‐β‐CD during the polymerization led to water‐insoluble poly(methyl methacrylate) (PMMA). It was found that using dNbipy resulted in higher monomer conversion than using bipy as the ligand under similar conditions. Furthermore, it is shown that the polymerization of MMA under these conditions has a living character. The polymers obtained have a much lower polydispersity than those obtained from conventional free‐radical polymerization. Also, the block copolymerization of PMMA bearing a bromoester end group with CD‐complexed styrene ( 2 a ) was carried out under ATRP conditions in aqueous medium.  相似文献   

13.
Diethyl vinylphosphonate does not undergo group transfer polymerization (GTP), but does react with the silyl ketene acetal end group of PMMA prepared by GTP to give α-(2-diethoxyphosphinylethyl) PMMA. Copolymerization of MMA and small amounts of diethyl vinylphosphonate led to copolymer. The telechelic PMMA diphosphonic acid, α-(2-dihydroxyphosphinylethyl) ω-dihydroxyphosphinylPMMA, was synthesized by initiation of GTP of MMA with diethyl 3-methoxy-3-trimethylsiloxy-2-propene-1-phosphonate, followed by termination with diethyl vinylphosphonate, silylation of the phosphonic ester with bromotrimethylsilane, and hydrolysis. Reaction of living poly (methyl methacrylateco-n-butyl methacrylate), prepared by GTP, with bis (trimethylsilyl) vinylphosphonate followed by hydrolysis gave α-(2-dihydroxyphosphinylethyl) poly (methyl methacrylateco-n-butyl methacrylate).  相似文献   

14.
N-methylacrylamide (NMAAm) and N-methylmethacrylamide (NMMAm) were polymerized to give polymer microspheres containing living propagating radicals. The microsphere polymer radicals were allowed to react with some binary mixtures of vinyl monomers including alternating copolymerization combinations. The reaction processes were investigated by ESR spectroscopy. In the poly(NMMAm) radical/methyl methacrylate (MMA)/styrene (St) system, the propagating radical from MMA was mainly observed at the higher MMA concentration, while polySt radical prevailed at the lower MMA concentration. In the poly(NMMAm) radical/α-methylstyrene (α-MeSt)/diethyl fumarate system, the α-MeSt radical was exclusively observed, while the maleic anhydride (MAn) radical was predominantly observed in the α-MeSt/MAn system. In the MAn/diphenylethylene system, the propagating radicals from both monomers were observed at comparable concentrations. The poly(NMAAm) microsphere radical behaved differently in the reaction with the MMA/St mixture. The poly(NMAAm) microsphere was found to incorporate preferentially St, leading to formation of the St radical. The St preference was enhanced in the St/cyclohexyl methacrylate (CHMA) system. These results were in agreement with those of block copolymerization via the reaction of poly(NMAAm) radical with the MMA/St or CHMA/St mixture, where the compositions of the resulting polymers were analyzed by pyrolysis gas chromatography.  相似文献   

15.
Homopolymers of methyl α-fluoroacrylate (MFA), trifluoroethyl methacrylate (TFEM), and hexafluoroisopropyl methacrylate (HFIM) were prepared, as were their methyl methacrylate (MMA) copolymers. Copolymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) with MMA were also prepared. The radiation susceptibilities of these polymers were measured by the 60Co γ-irradiation method, in which molecular weights were measured by membrane osmometry and gel permeation chromatography (GPC). All the copolymers degraded by predominant chain scission except poly(methyl α-fluoroacrylate), (PMFA), which crosslinks even at low doses (ca. 1 Mrad). The Gs - Gx and Gs values of the chain scissioning polymers and copolymers are higher than those of poly(methyl methacrylate) PMMA reference. The high susceptibility of PMFA homopolymer to crosslinking is in contrast to that of poly(methyl α-chloroacrylate), as we reported earlier. This effect is interpreted as resulting from extensive hydrogen fluoride and polyenlyl radical formation, which leads to facile crosslinking. However, incorporation of the MFA monomer unit causes the (22/78) MFA/MMA copolymer to degrade with a larger value of Gs that PMMA. Apparently a second-order process leads to crosslinking in PMFA and this is retarded in the copolymer. In the hehomopolymers of HFIM and TFEM and in the HFIM-MMA and TFEM-MMA copolymers the HFIM and TFEM components facilitate degradation with negligible crosslinking. The increased degradation susceptibility of VDF and CTFE copolymers with MMA over that of PMMA is attributed to processes at the VDF or CTFE components present in smaller concentrations (3-5 mole %) than the threshold levels (25-50% necessary for significant crosslinking).  相似文献   

16.
An environmentally friendly one-pot synthetic method based on green chemistry was developed to prepare thermodynamically partially compatible poly(2,6-dimethyl-1,4-phenylene oxide)/poly(methylmethacrylate) (PPO/PMMA) alloy in water. The oxidative polymerization of 2,6-dimethylphenol in alkaline aqueous solution was firstly conducted and then methyl methacrylate (MMA) was added into the reactor before the end of polymerization. MMA could penetrate into PPO particles and then in situ reverse atom transfer radical polymerization (RATRP) of methyl methacrylate was initiated by 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride after the oxidative polymerization. Both the oxidative polymerization of 2,6-dimethylphenol and RATRP of methyl methacrylate were catalyzed by the complex of CuCl2 and 4-dimethylaminopyridine. Finally, thermodynamically partially compatible PPO/PMMA alloy was successfully prepared which possessed a multi-layer core-shell structure with two polymers embedded in each other.  相似文献   

17.
Abstract

Methyl methacrylate (MMA) was found to be effectively polymerized with bis(cyclopentadienyl)titanium dichloride (CP2TiCl2) in a water-methanol mixture (1:1, v/v). The polymerization proceeded heterogeneously because the resulting poly(MMA) was insoluble in the system. The rate (R p) of the heterogenous polymerization was apparently expressed by R p = k[Cp2TiCl2]2[MMA]2˙5 (at 40°C). The resulting poly(MMA) was observed to consist of tetrahydrofuran (THF)-soluble and insoluble parts. In contrast with the usual radical poly(MMA), the THF-insoluble part was soluble in benzene, toluene, and chloroform but insoluble in polar solvents such as ethyl acetate, acetone, acetonitrile, dimethylformamide, and dimethylsulfoxide. The polymerization was found to be profoundly accelerated by irradiation with a fluorescent room lamp (15 W). The results of copolymerization of MMA and acrylonitrile indicated that the present polymerization proceeds through a radical mechanism.  相似文献   

18.
Polystyrene-block-poly(5,6-benzo-2-methylene-1,3-dioxepane) (PSt-b-PBMDO), poly(methyl methacrylate)-block-PBMDO (PMMA-b-PBMDO) and poly(methyl acrylate)-block-PBMDO (PMA-b-PBMDO) were synthesized by two-step atom transfer radical polymerization (ATRP) of conventional vinyl monomers, then BMDO. First, the polymerization of St, or MMA, or MA was realized by ATRP with ethyl α-bromobutyrate (EBrB) as initiator in conjunction with CuBr and 2,2-bipyridine (bpy). After isolation, polymers with terminal bromine, PSt-Br, PMMA-Br and PMA-Br, were obtained. Second, the ATRP of BMDO was performed by using macroinitiator, PSt-Br (or PMMA-Br, PMA-Br) in the presence of CuBr/bpy. The structures of block copolymers were characterized by 1H NMR spectra. Molecular weight and polydispersity index were determined on gel permeation chromatograph. Among the block copolymers obtained, PMA-b-PBMDO shows the most narrow molecular weight distribution.  相似文献   

19.
Vinyl polymerizations initiated by lithium organocuprates under several conditions were investigated. It was observed that this catalyst was effective in the polymerization of specific monomers such as α,β-unsaturated nitrile and carbonyl analogues. The rate of polymerization was rapid but retarded by the addition of pyridine, nitrobenzene, or hydroquinone. Polymerization of methyl methacrylate (MMA) with lithium di-n-butylcuprate as initiator produces predominantly isotactic poly(methyl methacrylate) (PMMA) in toluene. The overall activation energy was estimated as 3.5 kcal/mol deg. Lithium di-n-butylcuprate exerts a higher stereoregulating effect on the addition of monomers than other organolithium initiators. It is proposed that polymerization proceeds via a coordinated anionic mechanism.  相似文献   

20.
Methyl methacrylate(MMA) polymerized in the presence of a new homogeneous catalyst of Y(acac)3-(i-Bu)3Al-BuLi. The effects of MMA/Y, Al/Y, Li/Y molar ratios, polymerization temperature and time are reported. The results show that a small amount of butyl lithium could greatly enhance the activity of the catalyst and the polymerization reaction could be carried out at low temperatures (-25℃-10℃) with a high conversion. 200 kg of poly(methyl methacrylate) (PMMA) with 63% syndiotacticity could be prepared by using 1 mole of yttrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号