首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Synthesis, Characterization, and EPR Studies of Heteropoly Compounds with Iron(III) in Tetrahedral and Octahedral Coordination The heteropoly compounds H5[FeO4W12O36] · 6 H2O (a0 = 1216 pm), H3[Fe(OH)6Mo6O18] · 4 H2O, Na5[FeO4W12O36] · nH2O and FeH2[FeO4W12O36] · 17 H2O, for the first time obtained in this work by freeze-drying and characterized by means of chemical analysis, i.r. and u.v. spectroscopy, X-ray powder-photographs, and magnetic measurements, appear as suitable model systems for EPR investigations. They contain, like a number of known FeIII-heteropoly compounds, FeIII in FeO4 or/and FeO6 units, which are isolated from each other by structural reasons. In the Keggin-compounds M5[EIIIO4W12O36] · nH2O ( I ) (M = Na, Rb, TMA, TEA; E = Fe, Al, B) FeIII occupies slightly distorted tetrahedral positions (g′ ≈? 2), which are characterized by zfs-values of ≈? 10 mT and line widthes ΔB of 2.0 ?15 mT. Unlike as for I cations with different physico-chemical characteristics have only little effect on the FeIII-zfs. This holds for the Anderson-complexes M3[Fe(OH)6Mo6O18]·nH2O, (M = H, K, NH4, TMA; g′ ≈? 4.3 ΔB ≈? 67 mT) and for M5[SiO4W11O35FeO5(OH2)]·nH2O, (M = K, TMA; g′ = 4.3 ΔB = 26.5 mT). The FeO6 octahedra are more distorted than the FeO4 tetrahedra in I and therefore less susceptible for structural changes.  相似文献   

2.
The First KEGGIN-Anion with Tetrahedral Coordination of Copper(II)-Oxygen: [α-Cu0,4(H2)0.6O4W12O36]6? The solution of the CuII-containing heteropolyanion was prepared starting from an aqueous solution of Na2WO4, adjusting to pH 5–6 by adding slowly a solution of Cu(NO3)2 in HNO3. The addition of the corresponding amount of N(CH3)4Br to the concentrated solution led to the crystallization of the greenish-yellow mixed crystals (TMA)6[α-Cu0.4(H2)0.6O4W12O36] · 9 H2O. After repeated recrystallization it has been investigated by chemical, spectroscopic (IR/Raman, UV, 183W/1H-NMR, ESR) and X-ray diffraction methods (monoclinic; space group P21; a = 13.117(4), b = 21.466(4), c = 13.223(3) Å, β = 91.60°; Z = 2; Dc = 3.041 g · cm?3; R = 8.0%). The distances of the four “tetrahedral” oxygen atoms to the position (0, 0, 0) range from 1.67 to 1.93 Å. The alternative occupation of the central KEGGIN position with copper(II) and two protons, respectively, accounts for the different distances. The prepared solid solution represents the first example for the tetrahedral copper(II)-oxygen coordination in any heteropolyanion compound.  相似文献   

3.
Transition Metal Peroxofluoro Complexes. IX. Crystal Structure of Ba3[Ti(O2)F5]2 · 2 H2O The pale yellow hydrat Ba3[Ti(O2)F5]2 · 2 H2O crystallizes tetragonal (space group P42/mbc, a = 1 248.5(3), c = 812.2(2) pm; Z = 4; R = 0.026 for 404 independent reflections). It contains isolated [Ti(O2)F5]3? anions. Thermal decomposition leads directly to α-Ba3Ti2O2F10, which is isotypic to α-Ba3Al2F12.  相似文献   

4.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

5.
The title compound, K5[BW12O40]·16H2O, contains a [BW12O40]5? polyanion of 222 crystallographic symmetry, with a central tetrahedrally coordinated BIII atom surrounded by four groups of three edge‐sharing octahedra (W3O13 subunits), which are linked in turn to each other and to the central BO4 tetrahedron by shared O atoms at the vertices. There is a crystallographically unique B—O bond of 1.554 (10) Å, while the average W—O distances are 2.344 (17) Å for four coordinate O atoms, 1.917 (12) and 1.89 (2) Å for two coordinate O atoms within and connecting the W3O13 subunits, respectively, and 1.709 (8) Å for terminal O atoms. Not all of the K+ ions and H2O groups were located.  相似文献   

6.
Oxalato‐ and Squarato‐Bridged Threedimensional Networks: The Crystal Structures of La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O and K[Bi(C2O4)2] · 5 H2O The title compounds have been formed by hydrolysis of amino‐ and thioderivatives of squaric acid in the presence of LaIII and BiIII ions. Both compounds are threedimensional coordination polymers in the solid state, as shown by single crystal X‐ray crystallography. In La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O oxalato‐bridged pairs of LaO9 polyhedra are connected with identical neighbouring polyhedra by squarate ions. In K[Bi(C2O4)2] · 5 H2O each Bi atom is fourfold linked to other Bi atoms by the oxalate ions. The resulting 3D network shows a diamond‐like topology with square‐shaped channels. In both structures the channels are partially filled by water molecules.  相似文献   

7.
The title double salt was obtained from the reaction of Y(NO3)3 and K6[H4Co2Mo10O38]·5H2O at a pH of about 2.0. The [H6CoMo6O24]3? anion is a typical B‐type Anderson‐structure heteropolyanion, and has an inversion center, with Co—O bond lengths in the range 1.907 (4)–1.919 (4) Å and Mo—O bond lengths in the ranges 1.709 (5)–1.721 (5), 1.902 (5)–1.951 (5) and 2.274 (4)–2.312 (4) Å.  相似文献   

8.
[Ho5(H2O)16(OH)2As6W64O220]25?, a Large Novel Polyoxoanion from Trivacant Keggin Fragments The novel polyoxotungstate Na7K18[Ho5(H2O)16(OH)2As6W64O220] · 56 H2O ( 1 ) was synthesized in aqueous solution and characterized by X‐ray structure analysis, elemental analysis and IR spectroscopy. The anion in 1 represents one of the largest polyoxoanions known yet and exhibits an unusual arrangement of six Keggin units. It consists of six trivacant lacunary α‐B‐(AsW9O33)9? Keggin fragments which are connected by a bridging [Ho5W10(H2O)16(OH)2O22]29+ unit. The five HoIII atoms are coordinated by eight oxygen atoms, forming a square‐antiprism.  相似文献   

9.
Three novel polyoxometalate compounds consisting of Anderson‐type anions and trivalent lanthanide cations, [Ln(H2O)7Cr(OH)6Mo6O18]n·4nH2O (Ln = Ce 1 ; Sm 2 ; Eu 3 ), have been synthesized in aqueous solution and characterized by single crystal X‐ray diffraction, elemental analyses, IR spectra, and TG analyses. Single crystal X‐ray diffractions reveal that the structures of the 1:1 composite compound formed by the heteropolyanion [Cr(OH)6Mo6O18]3? as the building unit and the [Ln(H2O)7]3+ complex fragment as the linker, which exhibit a type of zig‐zag chain with alternating cations and anions through the Mo‐Ot′‐Ln‐Ot′‐Mo linkage in the crystal. The magnetic properties of 1 ? 3 have been studied by measuring their magnetic susceptibility over the temperature range of 2‐300 K. The UV‐vis spectra of 1 give the Mo‐O and CrIII‐O charge transfer transitions at 203 and 543 nm, respectively. In addition, the fluorescent characteristic transition of the Eu3+ ions in compound 3 is reported.  相似文献   

10.
Preparation of the Free 12-Tungstoaluminium Acid H5[AlO4W12O36] · 6 H2O by Means of the Cryogenic Method The title compound was first prepared in solid state from its aqueous solution by means of the cryogenic method and characterized by chemical and thermal analyses, IR and UV spectroscopy. From X-ray heating patterns the formation of a new cubic phase 1/2 Al2O3 · 12 WO3 (I) at 400°C was found, being stable till 830°C: a = 378 pm (600°C). High-resolution 27Al NMR (MAS-technique) was used to determine the tetrahedral coordination of aluminium in the title compound and the octahedral coordination in I. The degradation of the doped WO3-phase I into Al2(WO4)3 begins at 600°C. Above 830°C tetragonal WO3 and Al2(WO4)3 coexist.  相似文献   

11.
On the Compound BaO · Al2O3 · 7 H2O On the basis of investigations using 27Al, 1H NMR, IR and thermoanalytical methods for the compound BaO · Al2O3 · 7 H2O a constitution as Ban[Al2(OH)8]n · 3n H2O with condensed AlO6 groups, sharing edges, is proposed. Relations between the Ba/Al ratio and the constitution of anions of barium aluminate hydrates are discussed.  相似文献   

12.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

13.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

14.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

15.
The heteropolytungstate (NH4)21{La(H2O)5[Ni(H2O)]2As4W40O140}·53H2O is obtained by the reaction of Na27[NaAs4W40O140]· 60H2O with NiCl2·6H2O, La(NO3)3·6H2O and NH4Cl at pH‐4.5. The structure and chemical composition are determined by X‐ray diffraction analysis and elemental analysis. The crystal data and main structure refinement are a = 1.9551(3) nm, b = 2.4156(4) nm, c= 3.7068(6) nm, β = 91.505(3)°, V = 17.500 (5) nm3, monoclinic crystal system with space group P21/n, Z = 4, R1 = 0.0573, wR2 = 0.0717 [I >2<s?(I)], R1, = 0.2463 and wR2 = 0.1199 (all data). [La(H2O)5] {Ni(H2O)}2AS4W40O140 has C2, symmetry. IR spectra of the ligand [NaAs4W40O140]27‐ and its three complexes were discussed.  相似文献   

16.
On the Crystal Structure of Barium Acetylene Dicarboxylate Monohydrate – Ba[C2(COO)2] · H2O Ba[C2(COO)2] · H2O crystallizes in the monoclinic space group P21/a. The lattice constants are a = 753.4(2), b = 921.8(2), c = 881.8(2) pm and β = 102.00(2)°. The crystal structure is characterized by an intricate three-dimensional framework made up by Ba2+ and [C2(COO)2]2? ions. Ba2+ has coordination number 9 and is bound to two water molecules and seven oxygen atoms belonging to carboxylate groups of the dianion. The [C2(COO)2]2? ion does not merely act like a multiple monodentate ligand, but coordinates Ba2+ in a chelate-like manner as well. The carboxylate groups of the dianion are inclined to each other by 65°.  相似文献   

17.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

18.
Concerning Potassium Arsenites in the Three-Component System K2O? As2O3? H2O. Preparation and Crystal Structure of K3(HAs2O4) (As2O4) · 3/2 H2O The phase K3(HAs2O4)(As2O4) · 3/2 H2O has been identified in the system K2O? As2O3? H2O at 40°C and characterized by X-ray structural analysis. In the crystal lattice independent polymetaarsenite anions, [HAs2O4?]n and [As2O42?]n, adopt parallel zweier single chains.  相似文献   

19.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

20.
On Osocuprates. XI. Ba3Cu2O4Cl2 A new oxohalogenocuprat, Ba3Cu2O4Cl2 mas prepared and investigated by X-ray single crystal methods. The hitherto unknown compound has orthorhombic symmetry (Space group: D2h5—Pmma; a = 6.653, b = 6.000, c = 10.563 Å). It shows angled chains of O2?-squares around Cu2+. One of the Cu2+ positions is completed by Clminus; to a tetragonal pyramid. The coordination polyhedrals of BaI–III and the connection with the Cu/O-chains are described and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号